Causal Falsification of Digital Twins

Rob Cornish^{*}, **Muhammad Faaiz Taufiq**^{*}, Arnaud Doucet, Chris Holmes

Department of Statistics, University of Oxford

June 25, 2023

*Equal contribution

MF Taufiq (University of Oxford)

Causal Falsification of Digital Twins

June 25, 2023

Simulators called Digital Twins are increasingly used to guide safety-critical decision-making

pulse.kitware.com

< A > <

< ∃⇒

Simulators called Digital Twins are increasingly used to guide safety-critical decision-making

pulse.kitware.com

In these environments, the accuracy of a twin is paramount

 $\underbrace{ Our \ question:}_{are \ available} Often \ \underbrace{ large \ datasets}_{are \ available} taken from the underlying phenomena$

How can we use this data to assess the accuracy of a given twin?

 $\underbrace{\text{Our question:}}_{\text{are available}} \text{ Often large datasets taken from the underlying phenomena}$

How can we use this data to assess the accuracy of a given twin?

<u>Constraints</u>: Assessment procedure itself must be reliable: \Rightarrow Prefer soundness over completeness

Want a procedure that can realistically scale to real twins \Rightarrow Want to make minimal assumptions

An natural approach is to compare directly the output of the twin with observational data

∃ >

An natural approach is to compare directly the output of the twin with observational data

However, if causal conclusions are sought (e.g. for planning), then this is $\frac{1}{1000}$ unsound for most datasets in practice

Motivating example

MF Taufiq (University of Oxford)

Causal Falsification of Digital Twins

June 25, 2023

< ∃⇒

< □ > < 同 >

æ

Toy scenario

Consider modelling effect of drug on weight for some population

Drug interacts with an enzyme $U \in \{0,1\}$ present in a subpopulation:

- If U = 1, drug increases weight
- If U = 0, drug has no effect

Suppose drug is only administered when U = 1

Toy scenario

Consider modelling effect of drug on weight for some population

Drug interacts with an enzyme $U \in \{0,1\}$ present in a subpopulation:

- If U = 1, drug increases weight
- If U = 0, drug has no effect

Suppose drug is only administered when U = 1

Blue: outcomes that were observed for patients administered drug; Red: outcomes that would be observed across whole population This phenomenon occurs because the data are confounded

Confounding is well-studied in the causal inference literature

However, implications for simulators are less appreciated

Key point: in general wrong to compare the data with the output of twin under the corresponding actions

Motivated by this observation, our paper:

- Formulates twin assessment as a causal inference problem
- Argues for an approach based on falsification rather than verification
- Presents a statistical methodology valid under minimal assumptions
- Illustrates via a large-scale case study

Aside: Causal Inference

Image: A matched block

æ

< ∃⇒

Causal inference provides a mathematical framework for reasoning about the causal effects of interventions based on observational data

Many questions we care about in practice are of a causal nature

• "What should I do to make things a certain way?" vs. "How do things evolve on their own?"

For this reason, highly suitable for Twins, for which decision-making and acting in the world are primary concerns

A Typical Problem

Straightforward problem: Given distribution of (X, A, Y) from the left-hand system, what is distribution of (X', Y') in the right-hand system?

A Typical Problem

Straightforward problem: Given distribution of (X, A, Y) from the left-hand system, what is distribution of (X', Y') in the right-hand system?

Answer: P(X' = x, Y' = y) on right is P(X = x, Y = y | A = a) on left

More general example

Given distribution of (X, A, Y) from the left-hand system, what is distribution of (X', Y') in the right-hand system?

June 25, 2023

More general example

Given distribution of (X, A, Y) from the left-hand system, what is distribution of (X', Y') in the right-hand system?

Answer:

P(X' = x, Y' = y) on right is P(X = x) P(Y = y | X = x, A = a) on left $(\neq P(X = x, Y = y | A = a))$

MF Taufiq (University of Oxford)

Causal Falsification of Digital Twins

June 25, 2023

Unidentifiable example

Given distribution of (X, A, Y) from the left-hand system, what is distribution of (X', Y') in the right-hand system?

Unidentifiable example

Given distribution of (X, A, Y) from the left-hand system, what is distribution of (X', Y') in the right-hand system?

Answer: Don't know! (without further assumptions)

In last case, the data contains unmeasured confounding (cf. second case)

Unmeasured confounding is usually assumed away, but it is in fact extremely common (e.g. U as enzyme from earlier)

For no unmeasured confounding, every factor that affects both A and Y must be included explicitly in the data

• Often tenuous, especially for safety-critical applications

Our Problem Setup

→ ∃ →

Image: A matched by the second sec

æ

Real World Process

Model real-world process via potential outcomes:

 $X_0, X_1(a_1), X_2(a_{1:2}), \ldots, X_T(a_{1:T})$ for each sequence $a_{1:T}$ of actions.

<u>Idea</u>: $X_t(a_{1:t})$ represents what would be observed after actions $a_{1:t}$

Digital Twin Process

Model twin similarly as

 $\widehat{X}_1(x_0, a_1), \dots, \widehat{X}_T(x_0, a_{1:T})$ where additionally x_0 is an initialisation <u>Idea:</u> $\widehat{X}_t(x_0, a_{1:t})$ represents output of twin after inputs x_0 and $a_{1:t}$

Interventional Correctness

Interventional correctness

Would like the distribution of each $\widehat{X}_{1:t}(x_0, a_{1:t})$ to be equal to the conditional distribution of $X_{1:t}(a_{1:t})$ given $X_0 = x_0$

Interventional Correctness

Interventional correctness

Would like the distribution of each $\widehat{X}_{1:t}(x_0, a_{1:t})$ to be equal to the conditional distribution of $X_{1:t}(a_{1:t})$ given $X_0 = x_0$

 \Rightarrow Can recover real-world distribution via Monte Carlo (e.g. for planning)

Obtain dataset of i.i.d. copies of

 $X_0, A_1, X_1(A_1), A_2, X_2(A_{1:2}), \ldots, A_T, X_T(A_{1:T})$

Obtain dataset of i.i.d. copies of

$$X_0, A_1, X_1(A_1), A_2, X_2(A_{1:2}), \ldots, A_T, X_T(A_{1:T})$$

Goal is to use this dataset to assess whether the twin is interventionally correct

Obtain dataset of i.i.d. copies of

$$X_0, A_1, X_1(A_1), A_2, X_2(A_{1:2}), \ldots, A_T, X_T(A_{1:T})$$

Goal is to use this dataset to assess whether the twin is interventionally correct

Overall model is intentionally very weak, which seems appropriate for the assessment problem

• Do not assume $X_t(a_{1:t}) \perp A_t \mid X_{0:t-1}(A_{1:t-1}), A_{1:t-1}$ (sequential randomisation assumption, i.e. no unmeasured confounding)

Verification and falsification

문 문 문

Standard assessment approaches have the following logical structure:

Verification assessment

- **(**) Choose a hypothesis \mathcal{H} such that, if \mathcal{H} is true, then the twin is correct
- **2** Try to show that \mathcal{H} is true
- If successful, consider the twin verified

Standard assessment approaches have the following logical structure:

Verification assessment

- **(**) Choose a hypothesis \mathcal{H} such that, if \mathcal{H} is true, then the twin is correct
- **2** Try to show that \mathcal{H} is true
- If successful, consider the twin verified

Problem with this approach:

Theorem

The distribution of $X_{0:t}(a_{1:t})$ is not identifiable from the distribution of $(X_{0:t}(A_{1:t}), A_{1:t})$.

Standard assessment approaches have the following logical structure:

Verification assessment

- **(**) Choose a hypothesis \mathcal{H} such that, if \mathcal{H} is true, then the twin is correct
- **2** Try to show that \mathcal{H} is true
- If successful, consider the twin verified

Problem with this approach:

Theorem

The distribution of $X_{0:t}(a_{1:t})$ is not identifiable from the distribution of $(X_{0:t}(A_{1:t}), A_{1:t})$.

 \Rightarrow Does not exist ${\cal H}$ with this property whose truth can be determined from the data alone

We consider the following alternative structure:

Falsification assessment

- $\textbf{O} \ \ Choose \ \textbf{hypotheses} \ \mathcal{H} \ such \ that, \ if \ the \ twin \ is \ correct, \ then \ \mathcal{H} \ is \ true$
- **2** Try to show that \mathcal{H} is false
- If successful, we have determined a failure mode of the twin

22 / 40

We consider the following alternative structure:

Falsification assessment

- $\textbf{O} \ \ Choose \ \textbf{hypotheses} \ \mathcal{H} \ such \ that, \ if \ the \ twin \ is \ correct, \ then \ \mathcal{H} \ is \ true$
- **2** Try to show that \mathcal{H} is false
- If successful, we have determined a failure mode of the twin

Advantage: can choose \mathcal{H} with this property whose falsity can be determined from data

We consider the following alternative structure:

Falsification assessment

- $\textbf{O} \ \ Choose \ \textbf{hypotheses} \ \mathcal{H} \ such \ that, \ if \ the \ twin \ is \ correct, \ then \ \mathcal{H} \ is \ true$
- **2** Try to show that \mathcal{H} is false
- If successful, we have determined a failure mode of the twin

Advantage: can choose \mathcal{H} with this property whose falsity can be determined from data

However: lack of falsification does not imply the twin is correct

Hypotheses from causal bounds

< 47 ▶

æ

MF Taufiq (University of Oxford)

Define real-valued outcomes $Y(a_{1:t}) := f(X_{0:t}(a_{1:t}))$ for some f

★ ∃ >

< □ > < 同 >

æ

Define real-valued outcomes $Y(a_{1:t}) \coloneqq f(X_{0:t}(a_{1:t}))$ for some f

Fix $a_{1:t}$ and let

$$\begin{split} N &\coloneqq \max\{0 \le s \le t \mid A_{1:s} = a_{1:s}\}\\ Y_{\text{lo}} &\coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) \; Y(A_{1:t}) + \mathbb{I}(A_{1:t} \ne a_{1:t}) \, y_{\text{lo}}\\ Y_{\text{up}} &\coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) \; Y(A_{1:t}) + \mathbb{I}(A_{1:t} \ne a_{1:t}) \, y_{\text{up}}. \end{split}$$

< 3 >

Define real-valued outcomes $Y(a_{1:t}) \coloneqq f(X_{0:t}(a_{1:t}))$ for some f

Fix $a_{1:t}$ and let

$$\begin{split} N &\coloneqq \max\{0 \le s \le t \mid A_{1:s} = a_{1:s}\}\\ Y_{\text{lo}} &\coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) \; Y(A_{1:t}) + \mathbb{I}(A_{1:t} \ne a_{1:t}) \, y_{\text{lo}}\\ Y_{\text{up}} &\coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) \; Y(A_{1:t}) + \mathbb{I}(A_{1:t} \ne a_{1:t}) \, y_{\text{up}}. \end{split}$$

Theorem (Causal bounds)

If
$$\mathbb{P}(y_{\text{lo}} \leq Y(a_{1:t}) \leq y_{\text{up}} \mid X_{0:t}(a_{1:t}) \in B_{0:t}) = 1$$
, then

$$\begin{split} \mathbb{E}[Y_{\mathrm{lo}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}] &\leq \mathbb{E}[Y(a_{1:t}) \mid X_{0:t}(a_{1:t}) \in B_{0:t}] \\ &\leq \mathbb{E}[Y_{\mathrm{up}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}]. \end{split}$$

Image: A matrix and a matrix

∃ ⇒

æ

Define real-valued outcomes $Y(a_{1:t}) \coloneqq f(X_{0:t}(a_{1:t}))$ for some f

Fix $a_{1:t}$ and let

$$\begin{split} N &\coloneqq \max\{0 \le s \le t \mid A_{1:s} = a_{1:s}\}\\ Y_{\text{lo}} &\coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) \; Y(A_{1:t}) + \mathbb{I}(A_{1:t} \ne a_{1:t}) \, y_{\text{lo}}\\ Y_{\text{up}} &\coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) \; Y(A_{1:t}) + \mathbb{I}(A_{1:t} \ne a_{1:t}) \, y_{\text{up}}. \end{split}$$

Theorem (Causal bounds)

If
$$\mathbb{P}(y_{\mathrm{lo}} \leq Y(a_{1:t}) \leq y_{\mathrm{up}} \mid X_{0:t}(a_{1:t}) \in B_{0:t}) = 1$$
, then

$$\begin{split} \mathbb{E}[Y_{\rm lo} \mid X_{0:N}(A_{1:N}) \in B_{0:N}] &\leq \mathbb{E}[Y(a_{1:t}) \mid X_{0:t}(a_{1:t}) \in B_{0:t}] \\ &\leq \mathbb{E}[Y_{\rm up} \mid X_{0:N}(A_{1:N}) \in B_{0:N}]. \end{split}$$

Key point: left and right-hand sides are identifiable (in fact, unbiasedly) from observational data

MF Taufiq (University of Oxford)

June 25, 2023

Theorem (Causal bounds)

If $\mathbb{P}(y_{\text{lo}} \leq Y(a_{1:t}) \leq y_{\text{up}} \mid X_{0:t}(a_{1:t}) \in B_{0:t}) = 1$, then

$$\begin{split} \mathbb{E}[Y_{\rm lo} \mid X_{0:N}(A_{1:N}) \in B_{0:N}] &\leq \mathbb{E}[Y(a_{1:t}) \mid X_{0:t}(a_{1:t}) \in B_{0:t}] \\ &\leq \mathbb{E}[Y_{\rm up} \mid X_{0:N}(A_{1:N}) \in B_{0:N}]. \end{split}$$

э

Theorem (Causal bounds)

If
$$\mathbb{P}(y_{\text{lo}} \leq Y(a_{1:t}) \leq y_{\text{up}} \mid X_{0:t}(a_{1:t}) \in B_{0:t}) = 1$$
, then

$$\mathbb{E}[Y_{ ext{lo}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}] \le \mathbb{E}[Y(a_{1:t}) \mid X_{0:t}(a_{1:t}) \in B_{0:t}] \ \le \mathbb{E}[Y_{ ext{up}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}].$$

Take $B_{0:t}$ to be the whole space and recall

$$Y_{ ext{lo}} \coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) Y(A_{1:t}) + \mathbb{I}(A_{1:t} \neq a_{1:t}) y_{ ext{lo}}$$

Lower bound becomes:

$$\mathbb{E}[Y(a_{1:t})] \geq \mathbb{E}[\mathbb{I}(A_{1:t} = a_{1:t}) | Y(A_{1:t}) + \mathbb{I}(A_{1:t} \neq a_{1:t}) | y_{\text{lo}}]$$

Image: A matrix and a matrix

æ

Theorem (Causal bounds)

If
$$\mathbb{P}(y_{\text{lo}} \leq Y(a_{1:t}) \leq y_{\text{up}} \mid X_{0:t}(a_{1:t}) \in B_{0:t}) = 1$$
, then

$$\mathbb{E}[Y_{ ext{lo}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}] \le \mathbb{E}[Y(a_{1:t}) \mid X_{0:t}(a_{1:t}) \in B_{0:t}] \ \le \mathbb{E}[Y_{ ext{up}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}].$$

Take $B_{0:t}$ to be the whole space and recall

$$Y_{ ext{lo}} \coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) Y(A_{1:t}) + \mathbb{I}(A_{1:t} \neq a_{1:t}) y_{ ext{lo}}$$

Lower bound becomes:

$$\mathbb{E}[Y(a_{1:t})] \geq \mathbb{E}[\mathbb{I}(A_{1:t} = a_{1:t}) | Y(A_{1:t}) + \mathbb{I}(A_{1:t} \neq a_{1:t}) | y_{\text{lo}}]$$

Essentially, choose worst-case for unseen subpopulation.

Image: A matrix and a matrix

→ ∃ →

Theorem (Causal bounds)

If
$$\mathbb{P}(y_{\text{lo}} \leq Y(a_{1:t}) \leq y_{\text{up}} \mid X_{0:t}(a_{1:t}) \in B_{0:t}) = 1$$
, then

$$\mathbb{E}[Y_{ ext{lo}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}] \le \mathbb{E}[Y(a_{1:t}) \mid X_{0:t}(a_{1:t}) \in B_{0:t}] \ \le \mathbb{E}[Y_{ ext{up}} \mid X_{0:N}(A_{1:N}) \in B_{0:N}].$$

Take $B_{0:t}$ to be the whole space and recall

$$Y_{ ext{lo}} \coloneqq \mathbb{I}(A_{1:t} = a_{1:t}) Y(A_{1:t}) + \mathbb{I}(A_{1:t} \neq a_{1:t}) y_{ ext{lo}}$$

Lower bound becomes:

$$\mathbb{E}[Y(a_{1:t})] \geq \mathbb{E}[\mathbb{I}(A_{1:t} = a_{1:t}) | Y(A_{1:t}) + \mathbb{I}(A_{1:t} \neq a_{1:t}) | y_{\text{lo}}]$$

Essentially, choose worst-case for unseen subpopulation. Corresponds to Manski [1990] (cf. Zhang and Bareinboim [2019]) Without further assumptions, these bounds cannot be improved upon for general Y(a_{1:t}) (or if Y(a_{1:t}) = f(X_t(a_{1:t})))

- Without further assumptions, these bounds cannot be improved upon for general Y(a_{1:t}) (or if Y(a_{1:t}) = f(X_t(a_{1:t})))
- Also, cannot bound $\mathbb{E}[Y(a_{1:t}) | X_{0:t}(a_{1:t})]$ nontrivially if $X_{1:t}(a_{1:t})$ is continuous

The twin is interventionally correct iff $(X_0, \widehat{X}_{1:T}(X_0, a_{1:T})) \stackrel{d}{=} X_{0:T}(a_{1:T})$

3. 3

The twin is interventionally correct iff $(X_0, \widehat{X}_{1:T}(X_0, a_{1:T})) \stackrel{d}{=} X_{0:T}(a_{1:T})$

Therefore, if the twin is interventionally correct,

$$\mathbb{E}[Y(a_{1:t}) \mid X_{1:t}(a_{1:t}) \in B_{1:t}] = \underbrace{\mathbb{E}[\widehat{Y}(a_{1:t}) \mid X_0 \in B_0, \widehat{X}_{1:t}(X_0, a_{1:t}) \in B_{1:t}]}_{=:\widehat{Q}}$$

The twin is interventionally correct iff $(X_0, \widehat{X}_{1:T}(X_0, a_{1:T})) \stackrel{d}{=} X_{0:T}(a_{1:T})$

Therefore, if the twin is interventionally correct,

$$\mathbb{E}[Y(a_{1:t}) \mid X_{1:t}(a_{1:t}) \in B_{1:t}] = \underbrace{\mathbb{E}[\widehat{Y}(a_{1:t}) \mid X_0 \in B_0, \widehat{X}_{1:t}(X_0, a_{1:t}) \in B_{1:t}]}_{=:\widehat{Q}}$$

Let $Q_{\rm lo}$ and $Q_{\rm up}$ be causal bounds from earlier \Rightarrow If the twin is interventionally correct, then $\mathcal{H}_{\rm lo}$ and $\mathcal{H}_{\rm up}$ hold, where

$$\mathcal{H}_{\mathrm{lo}}: \mathcal{Q}_{\mathrm{lo}} \leq \widehat{\mathcal{Q}} \qquad \qquad \mathcal{H}_{\mathrm{up}}: \widehat{\mathcal{Q}} \leq \mathcal{Q}_{\mathrm{up}}$$

(Note dependence on $(t, f, a_{1:t}, B_{0:t})$)

The twin is interventionally correct iff $(X_0, \widehat{X}_{1:T}(X_0, a_{1:T})) \stackrel{d}{=} X_{0:T}(a_{1:T})$

Therefore, if the twin is interventionally correct,

$$\mathbb{E}[Y(a_{1:t}) \mid X_{1:t}(a_{1:t}) \in B_{1:t}] = \underbrace{\mathbb{E}[\widehat{Y}(a_{1:t}) \mid X_0 \in B_0, \widehat{X}_{1:t}(X_0, a_{1:t}) \in B_{1:t}]}_{=:\widehat{Q}}$$

Let $Q_{\rm lo}$ and $Q_{\rm up}$ be causal bounds from earlier \Rightarrow If the twin is interventionally correct, then $\mathcal{H}_{\rm lo}$ and $\mathcal{H}_{\rm up}$ hold, where

$$\mathcal{H}_{\mathrm{lo}}: \mathcal{Q}_{\mathrm{lo}} \leq \widehat{\mathcal{Q}} \qquad \qquad \mathcal{H}_{\mathrm{up}}: \widehat{\mathcal{Q}} \leq \mathcal{Q}_{\mathrm{up}}$$

(Note dependence on $(t, f, a_{1:t}, B_{0:t})$)

Interpretation: (e.g.) if \mathcal{H}_{lo} is false, then when $(X_0, \widehat{X}_{1:t}(X_0, a_{1:t})) \in B_{0:t}$, the outputs $f(X_0, \widehat{X}_{1:t}(X_0, a_{1:t}))$ are on average too small

Statistical methodology

< □ > < 同 >

æ

< ∃⇒

High-level overview

Consider testing a given $\mathcal{H}_{\mathrm{lo}}: \mathcal{Q}_{\mathrm{lo}} \leq \widehat{\mathcal{Q}}$

Recall: we have an observational dataset of i.i.d. copies of

$$X_0, A_1, X_1(A_1), A_2, X_2(A_{1:2}), \ldots, A_T, X_T(A_{1:T}).$$

For given $a_{1:t}$, generate dataset of i.i.d. copies of

$$X_0, \widehat{X}_1(X_0, a_1), \ldots, \widehat{X}_t(X_0, a_{1:t})$$

29 / 40

Consider testing a given $\mathcal{H}_{\mathrm{lo}}: \mathcal{Q}_{\mathrm{lo}} \leq \widehat{\mathcal{Q}}$

Recall: we have an observational dataset of i.i.d. copies of

$$X_0, A_1, X_1(A_1), A_2, X_2(A_{1:2}), \ldots, A_T, X_T(A_{1:T}).$$

For given $a_{1:t}$, generate dataset of i.i.d. copies of

$$X_0, \widehat{X}_1(X_0, a_1), \ldots, \widehat{X}_t(X_0, a_{1:t})$$

Use e.g. Hoeffding's inequality to obtain one-sided conf. intervals R_{lo}^{α} , \hat{R}^{α} ,

$$\mathbb{P}(\mathcal{Q}_{ ext{lo}} \geq \mathcal{R}_{ ext{lo}}^{lpha}) \geq 1 - rac{lpha}{2} \qquad \qquad \mathbb{P}(\widehat{\mathcal{Q}} \leq \widehat{\mathcal{R}}^{lpha}) \geq 1 - rac{lpha}{2}$$

and reject $\mathcal{H}_{
m lo}$ if $\widehat{R}^{lpha} < R_{
m lo}^{lpha}$, or return a p-value

Control for multiple testing via e.g. Holm-Bonferroni or Benjamini-Yekutieli

< ∃ >

Image: A matched by the second sec

æ

Control for multiple testing via e.g. Holm-Bonferroni or Benjamini-Yekutieli

Can choose parameters $(t, f, a_{1:t}, B_{0:t})$ for each \mathcal{H}_{lo} and \mathcal{H}_{up} in a data-dependent way, provided we use sample splitting

• Useful e.g. for $y_{\rm lo}$ and $y_{\rm up}$

Control for multiple testing via e.g. Holm-Bonferroni or Benjamini-Yekutieli

Can choose parameters $(t, f, a_{1:t}, B_{0:t})$ for each \mathcal{H}_{lo} and \mathcal{H}_{up} in a data-dependent way, provided we use sample splitting

• Useful e.g. for $y_{\rm lo}$ and $y_{\rm up}$

No additional assumptions required by construction

Case study: Pulse Physiology Engine

Image: A matched by the second sec

æ

★ ∃ >

We apply our methodology to Pulse Physiology Engine, an open source computational model designed for human physiology simulation

Validate using the MIMIC-III dataset, generated from 40,000+ ICU patients at Beth Israel Hospital

Pulse Physiology Engine

June 25, 2023

Image: A matrix and a matrix

< ∃→

3

Results

Physiological quantity	# Rejections	# Hypotheses
Chloride Blood Concentration (Chloride)	24	94
Sodium Blood Concentration (Sodium)	21	94
Potassium Blood Concentration (Potassium)	13	94
Skin Temperature (Temp)	10	86
Calcium Blood Concentration (Calcium)	5	88
Glucose Blood Concentration (Glucose)	5	96
Arterial CO_2 Pressure (pa CO_2)	3	70
Bicarbonate Blood Concentration (HCO ₃)	2	90
Systolic Arterial Pressure (SysBP)	2	154
Arterial O_2 Pressure (pa O_2)	0	78
Arterial pH (Arterial₋pH)	0	80
Diastolic Arterial Pressure (DiaBP)	0	72
Mean Arterial Pressure (MeanBP)	0	92
Respiration Rate (RR)	0	172
Heart Rate (HR)	0	162

Table: Overall rejections (FWER = 0.05)

э

Additional granularity

p-values for physiological quantities some rejections (notice consistent over/underestimation)

For two separate choices of $(a_{1:t}, B_{1:t})$, compare

$$egin{aligned} \widehat{Q}_t &:= \mathbb{E}[\widehat{Y}(a_{1:t}) \mid \widehat{X}_{0:t}(a_{1:t}) \in B_{0:t}], \ Q_t^{\mathrm{obs}} &:= \mathbb{E}[Y(A_{1:t}) \mid X_{0:t}(A_{1:t}) \in B_{0:t}, A_{1:t} = a_{1:t}]. \end{aligned}$$

Left case looks worse, but in fact only right case leads to some rejection

Pitfalls of naive twin assessment (2)

Despite apparent similarity, right hypothesis is rejected but left one is not

June 25, 2023

∃ >

Pitfalls of naive twin assessment (3)

Despite apparent similarity, right hypothesis is rejected but left one is not

June 25, 2023

.∋...>

Joint work with Rob Cornish, Arnaud Doucet, and Chris Holmes

- Charles F Manski. Nonparametric bounds on treatment effects. *The American Economic Review*, 80(2):319–323, 1990.
- Junzhe Zhang and Elias Bareinboim. Near-optimal reinforcement learning in dynamic treatment regimes. *Advances in Neural Information Processing Systems*, 32, 2019.