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Abstract

O�-policy evaluation (OPE) is a critical challenge in robust decision-making that seeks

to assess the performance of a new policy using data collected under a di�erent policy.

However, the existing OPE methodologies su�er from several limitations arising from

statistical uncertainty as well as causal considerations. In this thesis, we address these

limitations by presenting three di�erent works.

Firstly, we consider the problem of high variance in the importance-sampling-based

OPE estimators. We propose a novel o�-policy evaluation estimator, the Marginal Ratio

(MR) estimator, to alleviate this problem. By focusing on the marginal distribution of

outcomes rather than the policy shift directly, the MR estimator achieves significant

variance reduction compared to state-of-the-art methods, while maintaining unbiasedness.

Next, we shift our attention towards uncertainty quantification in o�-policy evaluation.

To this end, we propose Conformal O�-Policy Prediction (COPP) as a novel approach to

quantify this uncertainty with finite-sample guarantees. Unlike traditional methods focusing

on point estimates of expected outcomes, COPP provides reliable predictive intervals for

outcomes under a target policy. This enables robust decision-making in risk-sensitive

applications and o�ers a more comprehensive understanding of policy performance.

Finally, we address the fundamental challenge of causal inference in o�-policy evaluation.

Recognizing the limitations of traditional OPE methods under unmeasured confounding, we

develop novel causal bounds for sequential decision settings that remain valid under arbitrary

confounding. We apply these bounds for the assessment of digital twin models without

relying on strong causal assumptions. We propose a framework for causal falsification,

allowing us to identify scenarios where the digital twin’s predictions diverge from real-

world behavior. This approach provides valuable insights into model reliability and helps

ensure safe and e�ective decision-making.

We conclude this thesis with a discussion of our contributions and limitations of the

presented work, and outline interesting avenues for future research arising from our work.
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1.1.2 O�-policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1.2.1 High variance of OPE estimators . . . . . . . . . . . . . . . . . . 4
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1.5.1 Works included in the thesis . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Works omitted from the thesis . . . . . . . . . . . . . . . . . . . 13

The ability to make well-informed decisions is crucial across a variety of domains.

Whether it is a doctor prescribing the most e�ective treatment for a patient or a company

launching a marketing campaign that resonates with its target audience [Xu et al., 2020,

Li et al., 2010, Bastani and Bayati, 2019], we constantly strive to take actions that lead to

desirable outcomes. However, achieving this goal becomes increasingly challenging in the

face of uncertainty. Real-world data is often noisy and incomplete, and the systems we

interact with are complex and constantly evolving. As machine learning models become

more integrated into critical applications, the need for robust decision-making under these

challenging conditions becomes paramount.

This thesis explores the key challenges of robust decision-making in machine learning,

specifically focusing on o�-policy evaluation [Kuzborskij et al., 2021, Wang et al., 2017a,

Thomas et al., 2015, Swaminathan and Joachims, 2015c,d, Dudík et al., 2014a]. Consider

the example of a doctor who wants to assess a new treatment for a disease. Ideally,
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they would conduct a randomized controlled trial [Tsiatis et al., 2019] where patients are

randomly assigned the new treatment or a standard one. However, such trials can be

expensive, time-consuming or worse, ethically problematic. O�-policy evaluation (OPE)

o�ers a compelling alternative by allowing us to evaluate the performance of a new decision-

making policy (the new treatment) using data collected under a di�erent policy (the

standard treatment). This eliminates the need for costly experimentation and allows for

quicker implementation of potentially more e�ective strategies.

However, o�-policy evaluation presents its own set of challenges. These challenges

stem from two main sources of uncertainty:

• Statistical uncertainty: This arises from the inherent randomness in the data

we have access to and the limitations of the models we use to represent the real

world. For instance, the doctor might have a limited number of patients in their

historical dataset, and their model might not perfectly capture a patient’s response

to treatment due to model misspecification. In these circumstances, the conventional

OPE methods may su�er from high variance and/or bias, thereby potentially resulting

in misleading conclusions [Saito et al., 2021, Su et al., 2020, Saito and Joachims,

2022].

• Causal unidentifiability: In many cases, it may be impossible to definitively

establish the causal e�ects of actions even if we had access to infinite data. This arises

due to factors like confounding variables, which can influence both the treatment and

the outcome. Imagine the existence of some unmeasured factors, such as a patient’s

pre-existing conditions, that can influence both their initial treatment and their

response to the treatment. This makes it challenging to isolate the true causal e�ect

of the new treatment from the influence of these confounding variables [Tsiatis et al.,

2019, Kallus and Zhou, 2018, Namkoong et al., 2020].

This thesis tackles these challenges head-on, proposing novel methods for o�-policy

evaluation that address both statistical and causal uncertainties. Before we go into

the specifics of these challenges, we introduce the problem of o�-policy evaluation in

contextual bandits which forms the basis of the setting considered in Chapters 2 and 3.
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1.1 O�-policy evaluation in contextual bandits

1.1.1 Contextual bandits

Contextual bandits [Lattimore and Szepesvári, 2020] provide a powerful framework for

tackling decision-making problems where the e�ectiveness of an action depends on the

specific context in which it is chosen. For instance, in medical decision-making, the

optimal treatment for a patient might depend on various factors such as their age, medical

history, and current symptoms. Contextual bandits allow us to model these complex

decision-making scenarios by incorporating the notion of context.

In this setting, we use covariates X œ X to denote features which encapsulate the

contextual information such as the patient’s age and medical history. We use A œ A to

represent the action chosen by some real-world agent (such as a doctor), and Y œ Y to

denote the outcome/reward observed as a result of taking action A. For example, Y œ {0, 1}

might represent whether a patient survives (Y = 1) or not (Y = 0). The goal of a learner in

contextual bandits is to choose actions A for a context X which maximises the reward Y .

1.1.2 O�-policy evaluation

O�-policy evaluation (OPE) tackles a crucial challenge in decision-making: assessing the

performance of a new policy using data collected under a di�erent policy [Swaminathan

and Joachims, 2015a, Wang et al., 2017b, Farajtabar et al., 2018a, Su et al., 2019b, Metelli

et al., 2021, Liu et al., 2019, Sugiyama and Kawanabe, 2012, Swaminathan et al., 2017b].

This is particularly valuable when conducting controlled experiments with the new policy is

impractical or unethical. Here, we formally define the OPE problem in contextual bandits

which will set up the challenges tackled in Chapters 2 and 3 of this thesis.

To be more concrete, let D := {(xi, ai, yi)}n
i=1 be a historically logged dataset with

n observations, generated by a (possibly unknown) behaviour policy fib(a | x), i.e. the

conditional distribution of agent’s actions is A | X = x ≥ fib( · | x). Next, suppose that we

are given a di�erent target policy, which we denote by fiú(a | x). Our goal is to estimate what

the expected outcome would be if actions were instead sampled from this target policy fiú.
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O�-policy evaluation (OPE)
The main objective of o�-policy evaluation (OPE) is to estimate the expectation of the

outcome Y under a given target policy fiú using only the logged data D.

The key challenge of OPE arises from the fact that we do not have access to samples

from the target distribution which makes the estimation of o�-policy value non-trivial in

general. To tackle this problem, the standard OPE methods make the following assumption.

Assumption 1.1.1 (No unmeasured confounding). The agent’s action in the observational

data A depends only on the context X and possibly additional randomness independent

of everything else. This means that when choosing the action, the agent does not rely on

additional information relevant to the outcome which is not captured in the context. For

instance, in a medical context, this assumption means that all of the information that

clinicians use to make treatment decisions is captured in the data. This assumption is also

referred to as the strong ignorability assumption [Tsiatis et al., 2019].

Then, under Assumption 1.1.1, the o�-policy value can be estimated using importance-

sampling-based methods [Horvitz and Thompson, 1952]. However, these estimators come

with their own set of limitations, which are described in the following section.

1.2 Limitations of existing OPE methods
1.2.1 High variance of OPE estimators

The conventional o�-policy value estimators use policy ratios fl(a, x) := fiú(a | x)/fib(a | x)

as importance weights. In cases where the two policies are significantly di�erent, the policy

ratios fl(a, x) attain extreme values leading to a high variance in the OPE estimators.

To alleviate this high variance, Dudík et al. [2014b] proposed a Doubly Robust (DR)

estimator for OPE which uses a control variate to decrease the variance of conventional

OPE estimators. However, DR still relies on policy ratios as importance weights and as a

result, also su�ers from high variance when the policy shift is large. This problem is further

exacerbated as the sizes of the action and context spaces grow [Sachdeva et al., 2020, Saito

and Joachims, 2022]. Chapter 2 of this thesis specifically focuses on this limitation of OPE.

Besides using control variates (as in DR estimator), several techniques have been

proposed to address the variance issues associated with importance weights.
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Trading o� variance for bias Swaminathan and Joachims [2015a,b], London and

Sandler [2019] attempt to bound the importance weights within a certain range to prevent

them from becoming excessively large. Besides this, the Direct Method (DM) [Beygelzimer

and Langford, 2008] avoids the use of importance-sampling by estimating the reward

function from observational data. Similarly, Switch-DR [Wang et al., 2017b] aims to

circumvent the high variance in conventional DR estimator by switching to DM when

the importance weights are large. However, these approaches introduce a bias-variance

trade-o�, as clipping the weights or using the learned reward function can introduce

bias into the estimates.

Marginalization-based techniques Several works explore marginalisation techniques

for variance reduction. For example, Saito and Joachims [2022] propose Marginalized

Inverse Propensity Score (MIPS), which considers the marginal shift in the distribution of

a lower dimensional embedding of the action space, denoted by E, instead of considering

the shift in the policies explicitly. While this approach reduces the variance, we show in

Chapter 2 that MIPS relies on an additional assumption regarding the action embeddings

E which does not hold in general.

In addition, various marginalisation ideas have also been proposed in the context of

Reinforcement Learning (RL). For example, Liu et al. [2018], Xie et al. [2019b], Kallus

and Uehara [2022] use methods which consider the shift in the marginal distribution of

the states, and apply importance weighting with respect to this marginal shift rather than

the trajectory distribution. Similarly, Fujimoto et al. [2021] use marginalisation for OPE

in deep RL, where the goal is to consider the shift in marginal distributions of state and

action. Although marginalization is a key trick of these estimators, these techniques are

aimed at resolving the curse of horizon, a problem specific to RL.

1.2.2 Lack of uncertainty quantification

Most techniques for OPE in contextual bandits focus on evaluating policies based on

their expected outcomes [Kuzborskij et al., 2021, Wang et al., 2017a, Thomas et al.,

2015, Swaminathan and Joachims, 2015c,d, Dudík et al., 2014a]. However, this can be

problematic as methods that are only concerned with the average outcome do not take into

account any notions of uncertainty in the outcome. Therefore, in risk-sensitive settings
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such as econometrics, where we want to minimize the potential risks, metrics such as CVaR

(Conditional Value at Risk) might be more appropriate [Keramati et al., 2020]. Additionally,

when only small sample sizes of observational data are available, the average outcomes

under finite data can be misleading, as they are prone to outliers and hence, metrics such

as medians or quantiles are more robust in these scenarios [Altschuler et al., 2019]. Next,

we outline some recent works which tackle this challenge by developing methodologies to

account for the uncertainty in o�-policy performance using available data.

O�-policy risk assessment in contextual bandits Instead of estimating bounds on

the expected outcomes, Huang et al. [2021], Chandak et al. [2021] establish finite-sample

bounds for a general class of metrics (e.g., Mean, CVaR, CDF) on the outcome. Their

methods can be used to estimate quantiles of the outcomes under the target policy and are

therefore robust to outliers. For example, Chandak et al. [2021] proposed a non-parametric

Weighted Importance Sampling (WIS) estimator for the empirical CDF of Y under fiú,

which can be used to construct predictive intervals on the outcome under target policy. This

can help us quantify the range of plausible outcomes Y that are likely to occur if actions

are chosen according to target policy fiú. However, the resulting bounds do not depend

on the context X (i.e., are not adaptive w.r.t. X). This can lead to overly conservative

intervals, which may not be very informative. In Chapter 3, we circumvent this problem

by proposing a methodology of constructing predictive intervals on Y under target policy

fiú which are adaptive w.r.t. context X and are therefore considerably more informative.

1.3 Causal considerations for sequential decisions

Having outlined some of the key limitations of OPE methods in contextual bandits, we

now move on to the causal considerations for o�-policy decision-making which will set up

our contribution in Chapter 4. Before we dive deeper into this topic, we introduce the

sequential decision setting which generalises the contextual bandits framework.

1.3.1 Sequential decision setting

Contextual bandits encapsulate the single-decision regimes where, for each observed context,

we take a single action and observe the resulting outcome. This is analogous to a doctor
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choosing a single treatment for a patient based on their current state. However, many real-

world decision-making scenarios involve multiple interventions over time, where each action

not only a�ects the immediate outcome but also influences the context for future decisions.

To capture this complexity, we introduce the sequential decision setting in this section.

This setting extends the framework of contextual bandits to handle sequential decision-

making problems, allowing us to model more complex scenarios where interventions unfold

over time and the context evolves dynamically.

We consider a setting with a fixed number of decisions per episode (i.e., a fixed time

horizon) T œ {1, 2, . . .}. For each t œ {0, . . . , T}, we assume that the process gives rise to an

observation at time t, denoted by Xt which takes values in some space Xt := Rdt . Moreover,

at time t œ {1, . . . , T} a real-world agent (such as a doctor) chooses an action At which takes

values in some space At. The agent’s choice of At may depend on the historical observations

(X0, . . . , Xt≠1) or any additional information not captured in historical observations that

the agent can access. For example, in a medical context, the observations may consist of a

patient’s vital signs, and the actions may consist of possible treatments or interventions

that the doctor chooses based on patient history. The actions taken up to time t, i.e.

(A1, A2, . . . , At) can influence the future observations (Xt, Xt+1, . . . , XT ). This describes the

sequential decision setting, of which the contextual bandits are a special case when T = 1.

1.3.2 Causal unidentifiability under unmeasured confounding

Most of the standard OPE methods for contextual bandits can be straightforwardly

extended to sequential decision settings [Uehara et al., 2022]. However, like in contextual

bandits, these estimators assume no unmeasured confounding (outlined in Assumption

1.1.1) in the available observational data. Informally, in the sequential decision setting,

this assumption holds when each action At is chosen by the behavioural agent solely on

the basis of the information available at time t that is actually recorded in the dataset,

namely X0, A1, X1, . . . , At≠1, Xt≠1, as well as possibly some additional randomness that is

independent of the real-world process, such as the outcome of a coin toss. Unobserved

confounding is present whenever this does not hold, i.e. whenever some unmeasured factor

simultaneously influences both the agent’s choice of action and the observation produced

by the real-world process. This can happen when the real-world agent has access to more
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information than is captured in the data. In such circumstances, the causal e�ect of a

given action sequence may be unidentifiable from the available observational data, making

it impossible to accurately estimate the value of a target policy. To make this concrete,

we provide an intuitive illustration of this phenomenon below using a toy example where

the available observational data su�ers from unmeasured confounding.

Toy example: Unmeasured confounding in medical decision-making
Suppose that we are interested in estimating the e�ect of a drug on the weight of patients

in a certain population. Moreover, assume that this drug interacts with an enzyme

that is only present in part of the population. Denote by U œ {0, 1} the presence or

absence of the enzyme in a patient, and assume that when U = 1 the patient’s weight

increases after action the drug is administered, and that when U = 0 the drug has no

e�ect. Additionally, suppose that, among the patients whose data we have obtained, the

drug was only prescribed to those for whom U = 1, perhaps on the basis of some initial

lab reports available to the prescriber. Finally, suppose that these lab results were not

included in the context X captured in the observational dataset D, so that the value

of U for each patient cannot be determined from the data we have available.

In this setup, since the drug was only administered to patients with U = 1, it would

appear from the data that the drug causes patient weight to increase. However, when

the drug is administered to the general population, i.e. regardless of the value of U ,

we would observe that the drug has no e�ect on patients for whom U = 0. Figure

1.1 illustrates this discrepancy under a toy model for this scenario. In this example,

since the data D contains no information about the presence or absence of the enzyme

in patients, U , it is impossible to determine using the data D alone how the drug

will a�ect a given population of patients.

In certain contexts it may be reasonable to assume that the data are unconfounded. For

example, in certain situations it may be possible to gather data in a way that specifically

guarantees there is no confounding. Randomised controlled trials, which ensure that each

At is chosen via a carefully designed randomisation procedure [Lavori and Dawson, 2004,

Murphy, 2005], constitute a widespread example of this approach. However, for typical

datasets, it is widely acknowledged that the assumption of no unmeasured confounding
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Figure 1.1: The discrepancy between observational data and interventional behaviour in the
presence of unmeasured confounding: the range of outcomes observed in the data for patients
who were administered the drug (blue) di�ers from what would be observed if the drug were
administered to the general population (red).

will rarely hold, and so OPE procedures based on this assumption may yield unreliable

results in practice [Murphy, 2003, Tsiatis et al., 2019]. This is formalised in a foundational

result from the causal inference literature, often referred to as the fundamental problem

of causal inference [Holland, 1986].

Fundamental problem of causal inference (informal statement)
The causal e�ect of an action is not uniquely identified by the observational data

distribution without additional assumptions.

Partial identification Since the precise identifiability of causal e�ects is not possible in

the presence of unmeasured confounding, a notable line of work instead explores partial

identification techniques [Manski, 1990, 1989, 2003]. Instead of the point identification of

causal e�ects which may require strong unconfounding assumptions, partial identification

typically considers the range of causal e�ects which may occur in the presence of confounding.

For example, Manski [1990] constructs sharp bounds on the causal e�ects which can be

readily estimated using the available observational data. While these bounds do not require

any strong assumptions, they can be conservative.

Sensitivity analysis Slightly stronger assumptions yield inferences that may be more

powerful but less credible. To this end, Rosenbaum [2002] proposes a classical model

of confounding for a single binary decision setting which posits that the unobserved

confounders have a limited influence on the agent’s actions in the real world. Namkoong

et al. [2020] extend this model to the multi-action sequential decision-making setting, and

subsequently use this to obtain bounds on the o�-policy value.
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The Rosenbaum model is also closely related to (albeit di�erent from) the marginal

sensitivity model introduced by Tan [2006] which also assumes bounds on the strength of

unmeasured confounding on agent’s actions. Subsequently, Kallus and Zhou [2020] use the

marginal sensitivity model to develop a policy learning algorithm which remains robust

to unmeasured confounding. However, these models impose assumptions on the strength

of unmeasured confounding which can be impossible to verify using observational data

alone, and therefore the inferences obtained may be misleading in many cases.

Proxy causal learning This comprises methodologies for estimating the causal e�ect

of actions on outcomes in the presence of unobserved confounding, using proxy variables

which contain relevant side information about the unmeasured confounders [Xu et al.,

2021, Tchetgen et al., 2020, Xu and Gretton, 2024]. This usually involves a two-stage

regression. First, the relationship between action and proxies is modelled and subsequently,

this model is used to learn the causal e�ect of actions on the outcomes. Kuroki and

Pearl [2014] outline the necessary conditions on proxy variables to obtain the true causal

e�ects. While proxy causal learning may be e�ective in cases where such proxy variables

are available, in many real-world settings the available proxy variables may not satisfy

the necessary conditions for identification of true causal e�ects.

Chapter 4 of this thesis considers the challenges posed by unmeasured confounding in

sequential decision setting. We propose a set of novel bounds on the causal e�ects in this

setting, which remain valid in the presence of arbitrary unmeasured confounding and rely on

minimal assumptions making them highly applicable to a wide variety of real-world settings.

1.4 Contributions and thesis outline

Having outlined some of the key challenges associated with o�-policy evaluation, we

dedicate the rest of this thesis to addressing each of these individually. Specifically,

this thesis is organised as follows:

Chapter 2: Variance reduction [Taufiq et al., 2023b] The first challenge we

consider is that of high variance in existing OPE estimators based on importance sampling.

As we mentioned in Section 1.2.1, this variance is exacerbated in cases where there is
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low overlap between behaviour and target policies, or where the action or context space

is high-dimensional. To address this challenge, we propose a novel OPE estimator for

contextual bandits, the Marginal Ratio (MR) estimator, which uses a marginalisation

technique to focus on the shift in the marginal distribution of outcomes Y directly, instead

of the policies themselves. Unlike the conventional approaches which use policy ratios as

importance weights, intuitively, our proposed estimator treats actions A and contexts X

as latent variables. Consequently, the resulting estimator is significantly more robust to

the overlap between policies and the sizes of action and/or context spaces. This chapter

also includes extensive theoretical and empirical analyses demonstrating the benefits of

the MR estimator compared to the state-of-the-art OPE estimators for contextual bandits.

Chapter 3: Uncertainty quantification [Taufiq et al., 2022] As explained in

Section 1.2.2, most OPE methods have focused on the expected outcome of a policy

which does not capture the variability of the outcome Y . In addition, many of these

methods provide only asymptotic guarantees of validity at best. In this chapter, we

address these limitations by considering a novel application of conformal prediction [Vovk

et al., 2005] to contextual bandits. Given data collected under a behavioral policy, we

propose conformal o�-policy prediction (COPP), which can output reliable predictive

intervals for the outcome under a new target policy. We provide theoretical finite-sample

guarantees without making any additional assumptions beyond the standard contextual

bandit setup, and empirically demonstrate the utility of COPP compared with existing

methods on synthetic and real-world data.

Chapter 4: Causal considerations [Cornish et al., 2023] In this chapter we consider

the sequential decision setting, where the available observational data may su�er from

unmeasured confounding. As mentioned in Section 1.3.2, fundamental results from causal

inference mean that in this setting the causal e�ect of interventions is unidentifiable

from the observational distribution. To address this challenge, we provide a novel set of

longitudinal causal bounds that remain valid under arbitrary unmeasured confounding.

Chapter 4 focuses on the application of these bounds for assessing the accuracy of

digital twin models. These models are virtual systems designed to predict how a real-world

process will evolve in response to interventions. To be considered accurate, these models
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must correctly capture the true causal e�ects of interventions. Unfortunately, the causal

unidentifiability results mean that observational data cannot be used to certify a twin in

this sense if the data are confounded. To circumvent this, we instead use our proposed

causal bounds to find situations in which the twin is not correct, and present a general-

purpose statistical procedure for doing so. Our approach yields reliable and actionable

information about the twin under only the assumption of an i.i.d. dataset of observational

trajectories, and remains sound even if the data are confounded.

Chapter 5: Conclusion Finally, we conclude by summarising the main findings of the

works presented in this thesis. In this chapter, we also discuss some of the limitations

of our proposed methodologies and mention some interesting avenues for future research

arising from these works.

1.5 An overview of work conducted during the DPhil

In this section, we provide an overview of the research conducted during the doctoral studies

by listing the papers which are included in this thesis, as well those which have been omitted.

1.5.1 Works included in the thesis

This is an integrated thesis where each chapter comprises a paper and therefore is self-

contained. These papers are listed here in chronological order for completeness.

1. Muhammad Faaiz Taufiq*, Jean-Francois Ton*, Rob Cornish, Yee Whye Teh,

and Arnaud Doucet. Conformal O�-Policy Prediction in Contextual Bandits. In

Advances in Neural Information Processing Systems, 2022. [Taufiq et al., 2022]

2. Rob Cornish*, Muhammad Faaiz Taufiq*, Arnaud Doucet, and Chris Holmes.

Causal Falsification of Digital Twins, 2023. Preprint. [Cornish et al., 2023]

3. Muhammad Faaiz Taufiq, Arnaud Doucet, Rob Cornish, and Jean-Francois Ton.

Marginal Density Ratio for O�-Policy Evaluation in Contextual Bandits. In Advances

in Neural Information Processing Systems, 2023. [Taufiq et al., 2023b]
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1.5.2 Works omitted from the thesis

For the purposes of coherence and conciseness, several works which were part of the

doctoral research have been omitted from this thesis. Here, we list these papers along

with a brief description in chronological order for completeness.

1. Muhammad Faaiz Taufiq, Patrick Blöbaum, and Lenon Minorics. Manifold

Restricted Interventional Shapley Values. In International Conference on Artificial

Intelligence and Statistics, 2023. [Taufiq et al., 2023a]

2. Muhammad Faaiz Taufiq, Jean-Francois Ton, and Yang Liu. Achievable Fairness

on your Data with Utility Guarantees. Preprint. [Taufiq et al., 2024]

3. Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao

Cheng, Yegor Klochkov, Muhammad Faaiz Taufiq, and Hang Li. Trustworthy

LLMs: A Survey and Guideline for Evaluating Large Language Models’ Alignment,

2023. In NeurIPS 2023 Workshop on Socially Responsible Language Modelling

Research (SoLaR). [Liu et al., 2024]

In Taufiq et al. [2023a], we consider the robustness of Shapley values, which are model-

agnostic methods for explaining model predictions. Many commonly used methods of

computing Shapley values, known as o�-manifold methods, are sensitive to model behaviour

outside the data distribution. This makes Shapley explanations highly sensitive to o�-

manifold perturbations of models, resulting in misleading explanations. To circumvent

this problem, we propose ManifoldShap, which respects the model’s domain of validity by

restricting model evaluations to the data manifold. We show, theoretically and empirically,

that ManifoldShap is robust to o�-manifold perturbations of the model and leads to more

accurate and intuitive explanations than existing state-of-the-art Shapley methods.

Beyond this, Taufiq et al. [2024] considers fairness within the context of machine learning

models. In this setting, training models that minimize disparity across di�erent sensitive

groups often leads to diminished accuracy, a phenomenon known as the fairness-accuracy

tradeo�. The severity of this trade-o� inherently depends on dataset characteristics

such as dataset imbalances or biases and therefore, using a uniform fairness requirement

across diverse datasets remains questionable. To address this, we present a computationally
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e�cient approach to approximate the fairness-accuracy trade-o� curve tailored to individual

datasets, backed by rigorous statistical guarantees. Crucially, we introduce a novel

methodology for quantifying uncertainty in our estimates, thereby providing practitioners

with a robust framework for auditing model fairness while avoiding false conclusions

due to estimation errors.

Finally, Liu et al. [2024] presents a comprehensive survey of key dimensions that

are crucial to consider when assessing the trustworthiness of Large Language Models

(LLMs). The survey covers seven major categories of LLM trustworthiness: reliability,

safety, fairness, resistance to misuse, explainability and reasoning, adherence to social

norms, and robustness. The empirical results presented in this study indicate that, in

general, more aligned models tend to perform better in terms of overall trustworthiness.

However, the e�ectiveness of alignment varies across the di�erent trustworthiness categories

considered. This highlights the importance of conducting more fine-grained analyses,

testing, and making continuous improvements on LLM alignment.
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Abstract

O�-Policy Evaluation (OPE) in contextual bandits is crucial for assessing new policies

using existing data without costly experimentation. However, current OPE methods, such

as Inverse Probability Weighting (IPW) and Doubly Robust (DR) estimators, su�er from

high variance, particularly in cases of low overlap between target and behavior policies

or large action and context spaces. In this paper, we introduce a new OPE estimator

for contextual bandits, the Marginal Ratio (MR) estimator, which focuses on the shift

in the marginal distribution of outcomes Y instead of the policies themselves. Through

rigorous theoretical analysis, we demonstrate the benefits of the MR estimator compared

to conventional methods like IPW and DR in terms of variance reduction. Additionally,

we establish a connection between the MR estimator and the state-of-the-art Marginalized

Inverse Propensity Score (MIPS) estimator, proving that MR achieves lower variance

among a generalized family of MIPS estimators. We further illustrate the utility of the

MR estimator in causal inference settings, where it exhibits enhanced performance in

estimating Average Treatment E�ects (ATE). Our experiments on synthetic and real-world

datasets corroborate our theoretical findings and highlight the practical advantages of

the MR estimator in OPE for contextual bandits.



2.1 Introduction

In contextual bandits, the objective is to select an action A, guided by contextual

information X, to maximize the resulting outcome Y . This paradigm is prevalent in

many real-world applications such as healthcare, personalized recommendation systems, or

online advertising [Li et al., 2010, Bastani and Bayati, 2019, Xu et al., 2020]. The objective

is to perform actions, such as prescribing medication or recommending items, which lead to

desired outcomes like improved patient health or higher click-through rates. Nonetheless,

updating the policy presents challenges, as naïvely implementing a new, untested policy

may raise ethical or financial concerns. For instance, prescribing a drug based on a new

policy poses risks, as it may result in unexpected side e�ects. As a result, recent research

[Swaminathan and Joachims, 2015a, Wang et al., 2017b, Farajtabar et al., 2018a, Su et al.,

2019b, Metelli et al., 2021, Liu et al., 2019, Sugiyama and Kawanabe, 2012, Swaminathan

et al., 2017b] has concentrated on evaluating the performance of new policies (target policy)

using only existing data that was generated using the current policy (behaviour policy).

This problem is known as O�-Policy Evaluation (OPE).

Current OPE methods in contextual bandits, such as the Inverse Probability Weighting

(IPW) [Horvitz and Thompson, 1952] and Doubly Robust (DR) [Dudík et al., 2014b]

estimators primarily account for the policy shift by re-weighting the data using the ratio

of the target and behaviour polices to estimate the target policy value. This can be

problematic as it may lead to high variance in the estimators in cases of substantial policy

shifts. The issue is further exacerbated in situations with large action or context spaces

[Saito and Joachims, 2022], since in these cases the estimation of policy ratios is even

more di�cult leading to extreme bias and variance.

In this work we show that this problem of high variance in OPE can be alleviated

by using methods which directly consider the shift in the marginal distribution of the

outcome Y resulting from the policy shift, instead of considering the policy shift itself (as

in IPW and DR). To this end, we propose a new OPE estimator for contextual bandits

called the Marginal Ratio (MR) estimator, which weights the data directly based on

the shift in the marginal distribution of outcomes Y and consequently is much more

robust to increasing sizes of action and context spaces than existing methods like IPW or

DR. Our extensive theoretical analyses show that MR enjoys better variance properties
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than the existing methods making it highly attractive for a variety of applications in

addition to OPE. One such application is the estimation of Average Treatment E�ect

(ATE) in causal inference, for which we show that MR provides greater sample e�ciency

than the most commonly used methods.

Our contributions in this paper are as follows:

• Firstly, we introduce MR, an OPE estimator for contextual bandits, that focuses

on the shift in the marginal distribution of Y rather than the joint distribution

of (X, A, Y ). We show that MR has favourable theoretical properties compared to

existing methods like IPW and DR. Our analysis also encompasses theory on the

approximation errors of our estimator.

• Secondly, we explicitly lay out the connection between MR and Marginalized Inverse

Propensity Score (MIPS) [Saito and Joachims, 2022], a recent state-of-the-art

contextual bandits OPE method, and prove that MR attains lowest variance among

a generalized family of MIPS estimators.

• Thirdly, we show that the MR estimator can be applied in the setting of causal

inference to estimate average treatment e�ects (ATE), and theoretically prove that

the resulting estimator is more data-e�cient with higher accuracy and lower variance

than commonly used methods.

• Finally, we verify all our theoretical analyses through a variety of experiments on

synthetic and real-world datasets and empirically demonstrate that the MR estimator

achieves better overall performance compared to current state-of-the-art methods.

2.2 Background

2.2.1 Setup and Notation

We consider the standard contextual bandit setting. Let X œ X be a context vector (e.g.,

user features), A œ A denote an action (e.g., recommended website to the user), and

Y œ Y denote a scalar reward or outcome (e.g., whether the user clicks on the website).

The outcome and context are sampled from unknown probability distributions p(y | x, a)

and p(x) respectively. Let D := {(xi, ai, yi)}n
i=1 be a historically logged dataset with n
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observations, generated by a (possibly unknown) behaviour policy fib(a | x). Specifically,

D consists of i.i.d. samples from the joint density under behaviour policy,

pfib(x, a, y) := p(y | x, a) fib(a | x) p(x). (2.1)

We denote the joint density of (X, A, Y ) under the target policy as

pfiú(x, a, y) := p(y | x, a) fiú(a | x) p(x). (2.2)

Moreover, we use pfib(y) to denote the marginal density of Y under the behaviour policy,

pfib(y) =
⁄

A◊X

pfib(x, a, y) da dx,

and likewise for the target policy fiú. Similarly, we use Efib and Efiú to denote the

expectations under the joint densities pfib(x, a, y) and pfiú(x, a, y) respectively.

O�-policy evaluation (OPE) The main objective of OPE is to estimate the expectation

of the outcome Y under a given target policy fiú, i.e., Efiú [Y ], using only the logged data D.

Throughout this work, we assume that the support of the target policy fiú is included

in the support of the behaviour policy fib. This is to ensure that importance sampling

yields unbiased o�-policy estimators, and is satisfied for exploratory behaviour policies

such as the ‘-greedy policies.

Assumption 2.2.1 (Support). For any x œ X , a œ A, fiú(a | x) > 0 =∆ fib(a | x) > 0.

2.2.2 Existing o�-policy evaluation methodologies

Next, we will present some of the most commonly used OPE estimators before out-

lining the limitations of these methodologies. This motivates our proposal of an al-

ternative OPE estimator.

The value of the target policy can be expressed as the expectation of outcome

Y under the target data distribution pfiú(x, a, y). However in most cases, we do not

have access to samples from this target distribution and hence we have to resort to

importance sampling methods.
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Inverse Probability Weighting (IPW) estimator One way to compute the target

policy value, Efiú [Y ], when only given data generated from pfib(x, a, y) is to rewrite the

policy value as follows:

Efiú [Y ] =
⁄

y pfiú(x, a, y) dy da dx =
⁄

y
pfiú(x, a, y)
pfib(x, a, y)
¸ ˚˙ ˝

fl(a,x)

pfib(x, a, y) dy da dx = Efib [Y fl(A, X)] ,

where fl(a, x) := pfiú (x,a,y)
pfib (x,a,y) = fiú(a|x)

fib(a|x) , given the factorizations in Eqns. (2.1) and (2.2).

This leads to the commonly used Inverse Probability Weighting (IPW) [Horvitz and

Thompson, 1952] estimator:

◊̂IPW := 1
n

nÿ

i=1
fl(ai, xi) yi.

When the behaviour policy is known, IPW is an unbiased and consistent estimator.

However, it can su�er from high variance, especially as the overlap between the behaviour

and target policies decreases.

Doubly Robust (DR) estimator To alleviate the high variance of IPW, Dudík et al.

[2014b] proposed a Doubly Robust (DR) estimator for OPE. DR uses an estimate of

the conditional mean µ̂(a, x) ¥ E[Y | X = x, A = a] (outcome model), as a control

variate to decrease the variance of IPW. It is also doubly robust in that it yields accurate

value estimates if either the importance weights fl(a, x) or the outcome model µ̂(a, x)

is well estimated [Dudík et al., 2014b, Jiang and Li, 2016]. The DR estimator for

Efiú [Y ] can be written as follows:

◊̂DR = 1
n

nÿ

i=1
fl(ai, xi) (yi ≠ µ̂(ai, xi)) + ÷̂(fiú),

where ÷̂(fiú) = 1
n

qn
i=1

q
aÕœA µ̂(aÕ, xi)fiú(aÕ

| xi) ¥ Efiú [µ̂(A, X)]. Here, ÷̂(fiú) is referred to

as the Direct Method (DM) as it uses µ̂(a, x) directly to estimate target policy value.

2.2.3 Limitation of existing methodologies

To estimate the value of the target policy fiú, the existing methodologies consider the shift

in the joint distribution of (X, A, Y ) as a result of the policy shift (by weighting samples by

policy ratios). As we show in Section 2.3.1, considering the joint shift can lead to ine�cient
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policy evaluation and high variance especially as the policy shift increases [Li et al., 2018].

Since our goal is to estimate Efiú [Y ], we will show in the next section that considering

only the shift in the marginal distribution of the outcomes Y from pfib(Y ) to pfiú(Y ), leads

to a more e�cient OPE methodology compared to existing approaches.

To better comprehend why only considering the shift in the marginal distribution is

advantageous, let us examine an extreme example where we assume that Y ‹‹ A | X,

i.e., the outcome Y for a user X is independent of the action A taken. In this specific

instance, Efiú [Y ] = Efib[Y ] ¥ 1/n
qn

i=1 yi, indicating that an unweighted empirical mean

serves as a suitable unbiased estimator of Efiú [Y ]. However, IPW and DR estimators use

policy ratios fl(a, x) = fiú(a|x)
fib(a|x) as importance weights. In case of large policy shifts, these

ratios may vary significantly, leading to high variance in IPW and DR.

In this particular example, the shift in policies is inconsequential as it does not impact

the distribution of outcomes Y . Hence, IPW and DR estimators introduce additional

variance due to the policy ratios when they are not actually required. This limitation is

not exclusive to this special case; in general, methodologies like IPW and DR exhibit high

variance when there is low overlap between target and behavior policies [Li et al., 2018]

even if the resulting shift in marginals of the outcome Y is not significant.

Therefore, we propose the Marginal Ratio (MR) OPE estimator for contextual bandits

in the subsequent section, which circumvents these issues by focusing on the shift in the

marginal distribution of the outcomes Y . Additionally, we provide extensive theoretical

insights on the comparison of MR to existing state-of-the-art methods, such as IPW and DR.

2.3 Marginal Ratio (MR) estimator

Our method’s key insight involves weighting outcomes by the marginal density ratio of out-

come Y :

Efiú [Y ] =
⁄

Y

y pfiú(y) dy =
⁄

Y

y
pfiú(y)
pfib(y) pfib(y) dy = Efib [Y w(Y )] ,

where w(y) := pfiú (y)
pfib (y) . This leads to the Marginal Ratio OPE estimator:

◊̂MR := 1
n

nÿ

i=1
w(yi) yi.
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In Section 2.3.1 we prove that by only considering the shift in the marginal distribution

of outcomes, the MR estimator achieves a lower variance than the standard OPE methods.

In fact, this estimator does not depend on the shift between target and behaviour policies

directly. Instead, it depends on the shift between the marginals pfib(y) and pfiú(y).

Estimation of w(y) When the weights w(y) are known exactly, the MR estimator is

unbiased and consistent. However, in practice the weights w(y) are often not known

and must be estimated using the logged data D. Here, we outline an e�cient way to

estimate w(y) by first representing it as a conditional expectation, which can subsequently

be expressed as the solution to a regression problem.

Lemma 2.3.1
Let w(y) = pfiú (y)

pfib (y) and fl(a, x) = fiú(a|x)
fib(a|x) , then w(y) = Efib [fl(A, X) | Y = y], and,

w = arg min
f

Efib

Ë
(fl(A, X) ≠ f(Y ))2

È
. (2.3)

Lemma 2.3.1 allows us to approximate w(y) using a parametric family {f„ : R æ

R | „ œ �} (e.g. neural networks) and defining ŵ(y) := f„ú(y), where „ú solves the

regression problem in Eq. (2.3).

Note that MR can also be estimated alternatively by directly estimating h(y) := w(y) y

using a similar regression technique as above and computing ◊̂MR = 1/n
qn

i=1 h(yi). We

include additional details along with empirical comparisons in Appendix A.6.1.

2.3.1 Theoretical analysis

Recall that the traditional OPE estimators like IPW and DR use importance weights

which account for the the shift in the joint distributions of (X, A, Y ). In this section, we

prove that by considering only the shift in the marginal distribution of Y instead, MR

achieves better variance properties than these estimators. Our analysis in this subsection

assumes that the ratios fl(a, x) and w(y) are known exactly. Since the OPE estimators

considered are unbiased in this case, our analysis of variance is analogous to that of the

mean squared error (MSE) here. We address the case where the weights are not known

exactly in Section 2.3.1. First, we make precise our intuition that the shift in the joint
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distribution of (X, A, Y ) is ‘greater’ than the shift in the marginal distribution of outcomes

Y . We formalise this using the notion of f -divergences.

Proposition 2.3.1
Let f : [0, Œ) æ R be a convex function with f(1) = 0, and Df(P ||Q) denotes the

f -divergence between distributions P and Q. Then,

Df (pfiú(x, a, y) || pfib(x, a, y)) Ø Df (pfiú(y) || pfib(y)) .

Intuition Proposition 2.3.1 shows that the shift in the joint distributions is at least

as ‘large’ as the shift in the marginals of the outcome Y . Traditional OPE estimators,

therefore take into consideration more of a distribution shift than needed, and consequently

lead to ine�cient estimators. In contrast, the MR estimator mitigates this problem

by only considering the shift in the marginal distributions of outcomes resulting from

the policy shift. This provides further intuition on why the MR estimator has lower

variance compared to existing methods.

Proposition 2.3.2 (Variance comparison with IPW estimator)

When the weights fl(a, x) and w(y) are known exactly, we have that Varfib[◊̂MR] Æ

Varfib [◊̂IPW]. In particular,

Varfib [◊̂IPW] ≠ Varfib [◊̂MR] = 1
n
Efib

Ë
Varfib [fl(A, X) | Y ] Y 2

È
Ø 0.

Intuition Proposition 2.3.2 shows that the variance of MR estimator is smaller than

that of the IPW estimator when the weights are known exactly. Moreover, the proposition

also shows that the di�erence between the two variances will increases as the variance

Varfib [fl(A, X) | Y ] increases. This variance is likely to be large when the policy shift

between fib and fiú is large, or when the dimensions of contexts X and/or the actions A is

large, and therefore in these cases the MR estimator will perform increasingly better than

the IPW estimator. A similar phenomenon occurs for DR as we show next, even though

in this case the variance of MR is not in general smaller than that of DR.
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Proposition 2.3.3 (Variance comparison with DR estimator)
When the weights fl(a, x) and w(y) are known exactly and µ(A, X) := E[Y | X, A], we

have that,

Varfib [◊̂DR] ≠ Varfib [◊̂MR] Ø
1
n
Efib [Varfib [fl(A, X) Y | Y ] ≠ Varfib [fl(A, X) µ(A, X) | X]] .

Intuition Proposition 2.3.3 shows that if the conditional variance Varfib [fl(A, X) Y | Y ]

is greater than Varfib [fl(A, X) µ(A, X) | X] on average, the variance of the MR estimator

will be less than that of the DR estimator. Intuitively, this will occur when the dimension

of context space X is high because in this case the conditional variance over X and

A, Varfib [fl(A, X) Y | Y ] is likely to be greater than the conditional variance over A,

Varfib [fl(A, X) µ(A, X) | X]. Our empirical results in Appendix A.6.2 are consistent with

this intuition. Additionally, we also provide theoretical comparisons with other extensions

of DR, such as Switch-DR [Wang et al., 2017b] and DR with Optimistic Shrinkage (DRos)

[Su et al., 2020] in Appendix A.2, and show that a similar intuition applies for these results.

We emphasise that the well known results in Wang et al. [2017b] which show that IPW

and DR estimators achieve the optimal worst case variance (where the worst case is taken

over a class of possible outcome distributions Y | X, A) are not at odds with our results

presented here (as the distribution of Y | X, A is fixed in our setting).

Comparison with Marginalised Inverse Propensity Score (MIPS) [Saito and
Joachims, 2022]

In this section, we compare MR against the recently proposed Marginalised Inverse

Propensity Score (MIPS) estimator [Saito and Joachims, 2022], which uses a marginalisation

technique to reduce variance and provides a robust OPE estimate specifically in contextual

bandits with large action spaces. We prove that the MR estimator achieves lower variance

than the MIPS estimator and doesn’t require new assumptions.

MIPS estimator As we mentioned earlier, the variance of the IPW estimator may

be high when the action A is high dimensional. To mitigate this, the MIPS estimator

assumes the existence of a (potentially lower dimensional) action embedding E, which

summarises all ‘relevant’ information about the action A. Formally, this assumption

can be written as follows:
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Assumption 2.3.1. The action A has no direct e�ect on the outcome Y , i.e.,

Y ‹‹ A | X, E.

For example, in the setting of a recommendation system where A corresponds to the

items recommended, E may correspond to the item categories. Assumption 2.3.1 then

intuitively means that item category E encodes all relevant information about the item A

which determines the outcome Y . Assuming that such action embedding E exists, Saito

and Joachims [2022] prove that the MIPS estimator ◊̂MIPS, defined as

◊̂MIPS := 1
n

nÿ

i=1

pfiú(ei, xi)
pfib(ei, xi)

yi = 1
n

nÿ

i=1

pfiú(ei | xi)
pfib(ei | xi)

yi,

provides an unbiased estimator of target policy value Efiú [Y ]. Moreover, Varfib[◊̂MIPS] Æ

Varfib[◊̂IPW].

(X, A) (X, E) Y

Figure 2.1: Bayesian network corresponding to Assumption 2.3.1.

Intuition The context-embedding pair (X, E) can be seen as a representation of the

context-action pair (X, A) which contains less ‘redundant information’ regarding the

outcome Y . Intuitively, the MIPS estimator, which only considers the shift in the

distribution of (X, E) is therefore more e�cient than the IPW estimator (which considers

the shift in the distribution of (X, A) instead).

MR achieves lower variance than MIPS Given the intuition above, we should achieve

greater variance reduction as the amount of redundant information in the representation

(X, E) decreases. We formalise this in Appendix A.4 and show that the variance of MIPS

estimator decreases as the representation gets closer to Y in terms of information content.

As a result, we achieve the greatest variance reduction by considering the marginal shift

in the outcome Y itself (as in MR) rather than the shift in the representation (X, E) (as

in MIPS). The following result formalizes this finding.
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Theorem 2.3.2
When the weights w(y), pfiú (e,x)

pfib (e,x) and fl(a, x) are known exactly, then under Assumption

2.3.1,

Efib [◊̂MR] = Efib [◊̂MIPS] = Efiú [Y ], and Varfib [◊̂MR] Æ Varfib [◊̂MIPS] Æ Varfib [◊̂IPW].

This analysis provides a link between the MR and MIPS estimators in the framework of

contextual bandits, and shows that the MR estimator achieves lower variance than MIPS

estimator while not requiring any additional assumptions (e.g. Assumption 2.3.1 as in

MIPS). We also verify this empirically in Section 2.5.1 by reproducing the experimental

setup in Saito and Joachims [2022] along with the MR baseline.

Weight estimation error

Our analysis so far assumes prior knowledge of the behavior policy fib and the marginal

ratios w(y). However, in practice, both quantities are often unknown and must be

estimated from data. To this end, we assume access to an additional training dataset

Dtr = {(xtr
i , atr

i , ytr
i )}m

i=1 (for weight estimation), in addition to the evaluation dataset

D = {(xi, ai, yi)}n
i=1 (for computing the OPE estimate). The estimation of ŵ(y) involves

a two-step process that exclusively utilizes data from Dtr:

(i) First, we estimate the policy ratio fl̂(a, x) ¥
fiú(a|x)
fib(a|x) . This can be achieved by estimating

the behaviour policy ‚fib, and defining fl̂(a, x) := fiú(a|x)
‚fib(a|x) . Alternatively, fl̂(a, x) can also

be estimated directly by using density ratio estimation techniques as in Sondhi et al.

[2020].

(ii) Secondly, we estimate the weights ŵ(y) using Eq. (2.3) with fl̂ instead of fl.

In practice, one may consider splitting Dtr for each estimation step outlined above.

Moreover, each approximation step may introduce bias and therefore, the MR estimator may

have two sources of bias. While classical OPE methods like IPW and DR also su�er from

bias because of fl̂ estimation, the estimation of ŵ(y) is specific to MR. However, we show

below that given any policy ratio estimate fl̂, if ŵ(y) approximates Efib[fl̂(A, X) | Y = y]

‘well enough’ (i.e., the estimation step (ii) shown above is ‘accurate enough’), then MR

achieves a lower variance than IPW and incurs little extra bias.
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Proposition 2.3.4
Suppose that the IPW and MR estimators are defined as,

◊̃IPW := 1
n

nÿ

i=1
fl̂(ai, xi) yi, and ◊̃MR := 1

n

nÿ

i=1
ŵ(yi) yi,

and define the approximation error as ‘ := ŵ(Y )≠w̃(Y ), where w̃(Y ) := Efib [fl̂(A, X) | Y ].
Then we have that, Bias(◊̃MR) ≠ Bias(◊̃IPW) = Efib[‘ Y ]. Moreover,

Varfib [◊̃IPW] ≠ Varfib [◊̃MR] = 1
n

(Efib [Varfib [fl̂(A, X) Y | Y ]]
¸ ˚˙ ˝

Ø0

≠Varfib [‘ Y ] ≠ 2 Cov(w̃(Y ) Y, ‘ Y )).

(2.4)

Intuition The ‘ term defined in Proposition 2.3.4 denotes the error of the second

approximation step outlined above. As a direct consequence of this result, we show in

Appendix A.3 that as the error ‘ becomes small (specifically as Efib [‘2] æ 0), the di�erence

between biases of MR and IPW estimator becomes negligible. Likewise, the terms Varfib [‘ Y ]

and Cov(w̃(Y ) Y, ‘ Y ) in Eq. (2.4) will also be small and as a result the variance of MR

will be lower than that of IPW (as the first term is positive).

In fact, using recent results regarding the generalisation error of neural networks [Lai

et al., 2023], we show that when using 2-layer wide neural networks to approximate

the weights ŵ(y), the estimation error ‘ declines with increasing training data size m.

Specifically, under certain regularity assumptions we obtain Efib [‘2] = O(m≠2/3). Using this

we show that as the training data size m increases, the biases of MR and IPW estimators

become roughly equal with a high probability, and

Varfib [◊̃IPW] ≠ Varfib [◊̃MR] = 1
n
Efib [Varfib [fl̂(A, X) Y | Y ]] + O(m≠1/3).

Therefore the variance of MR estimator falls below that of IPW for large enough m. The

empirical results shown in Appendix A.6.2 are consistent with this result. Due to space

constraints, the main technical result has been included in Appendix A.3.

2.3.2 Application to causal inference

Beyond contextual bandits, the variance reduction properties of the MR estimator make it

highly useful in a wide variety of other applications. Here, we show one such application in

the field of causal inference, where MR can be used for the estimation of average treatment
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e�ect (ATE) [Pearl, 2009] and leads to some desirable properties in comparison to the

conventional ATE estimation approaches. Specifically, we illustrate that the MR estimator

for ATE utilizes the evaluation data D more e�ciently and achieves lower variance than

state-of-the-art ATE estimators and consequently provides more accurate ATE estimates.

To be concrete, the goal in this setting is to estimate ATE, defined as follows:

ATE := E[Y (1) ≠ Y (0)].

Here Y (a) corresponds to the outcome under a deterministic policy fia(aÕ
| x) := (aÕ = a).

Hence any OPE estimator can be used to estimate E[Y (a)] (and therefore ATE) by

considering target policy fiú = fia. An important distinction between MR and existing

approaches (like IPW or DR) is that, when estimating E[Y (a)], the existing approaches

only use datapoints in D with A = a. To see why this is the case, we note that the

policy ratios fiú(A|X)
fib(A|X) = (A=a)

fib(A|X) are zero when A ”= a. In contrast, the MR weights pfiú (Y )
pfib (Y )

are not necessarily zero for datapoints with A ”= a, and therefore the MR estimator uses

all evaluation datapoints when estimating E[Y (a)].

As such we show that MR applied to ATE estimation leads to a smaller variance than the

existing approaches. Moreover, because MR is able to use all datapoints when estimating

E[Y (a)], MR will generally be more accurate than the existing methods especially in the

setting where the data is imbalanced, i.e., the number of datapoints with A = a is small

for a specific action a. In Appendix A.5, we formalise this variance reduction of the MR

ATE estimator compared to IPW and DR estimators, by deriving analogous results to

Propositions 2.3.2 and 2.3.3. In addition, we also show empirically in Section 2.5.3 that

the MR ATE estimator outperforms the most commonly used ATE estimators.

2.4 Related work

O�-policy evaluation is a central problem both in contextual bandits [Dudík et al., 2014b,

Wang et al., 2017b, Liu et al., 2018, Farajtabar et al., 2018a, Su et al., 2019b, 2020, Kallus

et al., 2021, Metelli et al., 2021, Saito et al., 2020] and in RL [Thomas and Brunskill, 2016,

Xie et al., 2019b, Kallus and Uehara, 2022, Liu et al., 2020]. Existing OPE methodologies

can be broadly categorised into Direct Method (DM), Inverse Probability Weighting (IPW),

and Doubly Robust (DR). While DM typically has a low variance, it su�ers from high
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bias when the reward model is misspecified [Voloshin et al., 2021]. On the other hand,

IPW [Horvitz and Thompson, 1952] and DR [Dudík et al., 2014b, Wang et al., 2017b,

Su et al., 2020] use policy ratios as importance weights when estimating policy value

and su�er from high variance as overlap between behaviour and target policies increases

or as the action/context space gets larger [Sachdeva et al., 2020, Saito and Joachims,

2022]. To circumvent this problem, techniques like weight clipping or normalisation

[Swaminathan and Joachims, 2015a,b, London and Sandler, 2019] are often employed,

however, these can often increase bias.

In contrast to these approaches, Saito and Joachims [2022] propose MIPS, which

considers the marginal shift in the distribution of a lower dimensional embedding of the

action space. While this approach reduces the variance associated with IPW, we show

in Section 2.3.1 that the MR estimator achieves a lower variance than MIPS while not

requiring any additional assumptions (like Assumption 2.3.1).

In the context of Reinforcement Learning (RL), various marginalisation techniques

of importance weights have been used to propose OPE methodologies. Liu et al. [2018],

Xie et al. [2019b], Kallus and Uehara [2022] use methods which considers the shift in the

marginal distribution of the states, and applies importance weighting with respect to this

marginal shift rather than the trajectory distribution. Similarly, Fujimoto et al. [2021] use

marginalisation for OPE in deep RL, where the goal is to consider the shift in marginal

distributions of state and action. Although marginalization is a key trick of these estimators,

these techniques do not consider the marginal shift in reward as in MR and are aimed at

resolving the curse of horizon, a problem specific to RL. Apart from this, Rowland et al.

[2020] propose a general framework of OPE based on conditional expectations of importance

ratios for variance reduction. While their proposed framework includes reward conditioned

importance ratios, this is not the main focus and there is little theoretical and empirical

comparison of their proposed methodology with existing state-of-the-art methods like DR.

Finally we note that the idea of approximating the ratio of intractable marginal

densities via leveraging the fact that this ratio can be reformulated as the conditional

expectation of a ratio of tractable densities is a standard idea in computational statistics

[Meng and Wong, 1996] and has been exploited more recently to perform likelihood-free

inference [Brehmer et al., 2020]. In particular, while Meng and Wong [1996] typically
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approximates this expectation through Markov chain Monte Carlo, Brehmer et al. [2020]

uses regression instead, however without any theory.

2.5 Empirical evaluation

In this section, we provide empirical evidence to support our theoretical results by

investigating the performance of our MR estimator against the current state-of-the-art

OPE methods. The code to reproduce our experiments has been made available at:

github.com/faaizT/MR-OPE.

2.5.1 Experiments on synthetic data

For our synthetic data experiment, we reproduce the experimental setup for the synthetic

data experiment in Saito and Joachims [2022] by reusing their code with minor modifications.

Specifically, X ™ Rd, for various values of d as described below. Likewise, the action

space A = {0, . . . , na ≠ 1}, with na taking a range of di�erent values. Additional details

regarding the reward function, behaviour policy fib, and the estimation of weights ŵ(y)

have been included in Appendix A.6.2 for completeness.

Target policies To investigate the e�ect of increasing policy shift, we define a class of poli-

cies,

fi–ú(a|x) = –ú (a = arg max
aÕœA

q(x, aÕ)) + 1 ≠ –ú

|A|
where q(x, a) := E[Y | X = x, A = a],

where –ú
œ [0, 1] allows us to control the shift between fib and fiú. In particular, as we

show later, the shift between fib and fiú increases as –ú
æ 1. Using the ground truth

behaviour policy fib, we generate a dataset which is split into training and evaluation

datasets of sizes m and n respectively.

Baselines We compare our estimator with DM, IPW, DR and MIPS estimators. Our

setup includes action embeddings E satisfying Assumption 2.3.1, and so MIPS is unbiased.

Additional baselines have been considered in Appendix A.6.2. For MR, we split the

training data to estimate ‚fib and ŵ(y), whereas for all other baselines we use the entire

training data to estimate ‚fib for a fair comparison.

https://github.com/faaizT/MR-OPE
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(a) Results with varying evaluation data size n. (b) Results with varying –ú.

Figure 2.2: Results for synthetic data experiment. In 2.2a we have –ú = 0.8 and in 2.2b we
have n = 800.

Results We compute the target policy value using the n evaluation datapoints. Here,

the MSE of the estimators is computed over 10 di�erent sets of logged data replicated

with di�erent seeds. The results presented have context dimension d = 1000, number

of actions na = 100 and training data size m = 5000. More experiments for a variety

of parameter values are included in Appendix A.6.2.

Varying number of evaluation data n In Figure 2.2a we plot the results with

increasing size of evaluation data n increases. MR achieves the smallest MSE among all

the baselines considered when n is small, with the MSE of MR being at least an order of

magnitude smaller than every baseline for n Æ 500. This shows that MR is significantly

more accurate than the baselines when the size of the evaluation data is small. As n æ Œ,

the di�erence between the results for MR and MIPS decreases. However, MR attains

smaller variance and MSE than MIPS generally, verifying our analysis in Section 2.3.1.

Moreover, Figure 2.2a shows that while the variance of MR is greater than that of DM,

it still achieves the lowest MSE overall, owing to the high bias of DM.

Varying –ú As –ú parameter of the target policy

increases, so does the shift between the policies fib and

fi–ú as illustrated by the figure on the right, which

plots the KL-divergence DKL(fib
|| fi–ú) as a function of –.

Figure 2.2b plots the results for increasing policy shift.

Overall, the MSE of MR estimator is lowest among all

the baselines. Moreover, while the MSE and variance of

all estimators increase with increasing –ú the increase in

these quantities is lower for the MR estimator than for the other baselines. Therefore,
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the relative performance of MR estimator improves with increasing policy shift and MR

remains robust to increase in policy shift.

Additional ablation studies In Appendix A.6.2, we investigate the e�ect of varying

context dimensions d, number of actions na and number of training data m. In every case,

we observe that the MR estimator has a smaller MSE than all other baselines considered.

In particular, MR remains robust to increasing na whereas the MSE and variance of IPW

and DR estimators degrade substantially when na Ø 2000. Likewise, MR outperforms

the baselines even when the training data size m is small.

2.5.2 Experiments on classification datasets

Following previous works on OPE in contextual bandits [Dudík et al., 2014b, Kallus et al.,

2021, Farajtabar et al., 2018b, Wang et al., 2017b], we transform classification datasets into

contextual bandit feedback data in this experiment. We consider five UCI classification

datasets [Dua and Gra�, 2017] as well as Mnist [Deng, 2012] and CIFAR-100 [Krizhevsky,

2009] datasets, each of which comprises {(xi, agt
i )}i, where xi œ X are feature vectors

and agt
i œ A are the ground-truth labels. In the contextual bandits setup, the feature

vectors xi are considered to be the contexts, whereas the actions correspond to the possible

class of labels. For the context vector xi and the action ai, the reward yi is defined as

yi := (ai = agt
i ), i.e., the reward is 1 when the action is the same as the ground truth label

and 0 otherwise. Here, the baselines considered include the DM, IPW and DR estimators

as well as Switch-DR [Wang et al., 2017b] and DR with Optimistic Shrinkage (DRos) [Su

et al., 2020]. We do not consider a MIPS baseline here as there is no natural embedding

E of A. Additional details are provided in Appendix A.6.3.

In Table 2.1, we present the results with number of evaluation data n = 1000 and

number of training data m = 500. The table shows that across all datasets, MR achieves

the lowest MSE among all methods. Moreover, for the Letter and CIFAR-100 datasets the

IPW and DR yield large bias and variance arising from poor policy estimates ‚fib. Despite

this, the MR estimator which utilizes the same ‚fib for the estimation of ŵ(y) leads to much

more accurate results. We also verify that MR outperforms the baselines for increasing

policy shift and evaluation data n in Appendix A.6.3.
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Table 2.2: Mean absolute ATE estimation error ‘ATE with standard errors over 10 di�erent
seeds, for increasing number of evaluation data n.

n 50 200 1600 3200

DM 0.092±0.003 0.092±0.003 0.092±0.004 0.092±0.004
DR 0.101±0.024 0.065±0.009 0.071±0.005 0.069±0.004
DRos 0.100±0.017 0.089±0.006 0.093±0.004 0.087±0.004
IPW 0.092±0.024 0.088±0.014 0.067±0.007 0.067±0.007
SwitchDR 0.101±0.024 0.065±0.009 0.071±0.005 0.069±0.004
MR (Ours) 0.062±0.007 0.065±0.007 0.061±0.005 0.061±0.006

2.5.3 Application to ATE estimation

In this experiment, we investigate the empirical performance of the MR estimator for ATE es-

timation.

Twins dataset We use the Twins dataset studied in Louizos et al. [2017], which comprises

data from twin births in the USA between 1989-1991. The treatment a = 1 corresponds to

being born the heavier twin and the outcome Y corresponds to the mortality of each of the

twins in their first year of life. Specifically, Y (1) corresponds to the mortality of the heavier

twin (and likewise for Y (0)). To simulate the observational study, we follow a similar

strategy as in Louizos et al. [2017] to selectively hide one of the two twins as explained

in Appendix A.6.4. We obtain a total of 11,984 datapoints, of which 5000 datapoints are

used to train the behaviour policy ‚fib and outcome model q̂(x, a).

Here, we consider the same baselines as the classification data experiments in previous

section. For our evaluation, we consider the absolute error in ATE estimation, ‘ATE, defined

as: ‘ATE := |◊̂(n)
ATE ≠ ◊ATE|. Here, ◊̂(n)

ATE denotes the value of the ATE estimated using n

evaluation datapoints. We compute the ATE value using the n evaluation datapoints, over

10 di�erent sets of observational data (using di�erent seeds). Table 2.2 shows that MR

achieves the lowest estimation error ‘ATE for all values of n considered here. While the

performance of other baselines improves with increasing n, MR outperforms them all.

2.6 Discussion

In this paper, we proposed an OPE method for contextual bandits called marginal ratio

(MR) estimator, which considers only the shift in the marginal distribution of the outcomes
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resulting from the policy shift. Our theoretical and empirical analysis showed that MR

achieves better variance and MSE compared to the current state-of-the-art methods and

is more data e�cient overall. Additionally, we demonstrated that MR applied to ATE

estimation provides more accurate results than most commonly used methods. Next, we

discuss limitations of our methodology and possible avenues for future work.

Limitations The MR estimator requires the additional step of estimating ŵ(y) which

may introduce an additional source of bias in the value estimation. However, ŵ(y) can

be estimated by solving a simple 1d regression problem, and as we show empirically in

Appendix A.6, MR achieves the smallest bias among all baselines considered in most cases.

Most notably, our ablation study in Appendix A.6.2 shows that even when the training

data is reasonably small, MR outperforms the baselines considered.

Future work The MR estimator can also be applied to policy optimisation problems,

where the data collected using an ‘old’ policy is used to learn a new policy. This approach

has been used in Proximal Policy Optimisation (PPO) [Schulman et al., 2017] for example,

which has gained immense popularity and has been applied to reinforcement learning with

human feedback (RLHF) [Lambert et al., 2022]. We believe that the MR estimator applied

to these methodologies could lead to improvements in the stability and convergence of

these optimisation schemes, given its favourable variance properties.
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Abstract

Most o�-policy evaluation methods for contextual bandits have focused on the expected

outcome of a policy, which is estimated via methods that at best provide only asymptotic

guarantees. However, in many applications, the expectation may not be the best measure

of performance as it does not capture the variability of the outcome. In addition,

particularly in safety-critical settings, stronger guarantees than asymptotic correctness may

be required. To address these limitations, we consider a novel application of conformal

prediction to contextual bandits. Given data collected under a behavioral policy, we

propose conformal o�-policy prediction (COPP), which can output reliable predictive

intervals for the outcome under a new target policy. We provide theoretical finite-sample

guarantees without making any additional assumptions beyond the standard contextual

bandit setup, and empirically demonstrate the utility of COPP compared with existing

methods on synthetic and real-world data.



Figure 3.1: Left (a): Conformal O�-Policy Prediction against standard o�-policy evaluation
methods. Right (b): 90% predictive intervals for Y against X for COPP, competing methods
and the oracle.

3.1 Introduction

Before deploying a decision-making policy to production, it is usually important to

understand the plausible range of outcomes that it may produce. However, due to

resource or ethical constraints, it is often not possible to obtain this understanding by

testing the policy directly in the real-world. In such cases we have to rely on observational

data collected under a di�erent policy than the target. Using this observational data to

evaluate the target policy is known as o�-policy evaluation (OPE).

Traditionally, most techniques for OPE in contextual bandits focus on evaluating policies

based on their expected outcomes; see e.g., Kuzborskij et al. [2021], Wang et al. [2017a],

Thomas et al. [2015], Swaminathan and Joachims [2015c,d], Dudík et al. [2014a]. However,

this can be problematic as methods that are only concerned with the average outcome do not

take into account any notions of variance, for example. Therefore, in risk-sensitive settings

such as econometrics, where we want to minimize the potential risks, metrics such as CVaR

(Conditional Value at Risk) might be more appropriate [Keramati et al., 2020]. Additionally,

when only small sample sizes of observational data are available, the average outcomes

under finite data can be misleading, as they are prone to outliers and hence, metrics such

as medians or quantiles are more robust in these scenarios [Altschuler et al., 2019].

Notable exceptions in the OPE literature are Huang et al. [2021], Chandak et al. [2021].

Instead of estimating bounds on the expected outcomes, Huang et al. [2021], Chandak

et al. [2021] establish finite-sample bounds for a general class of metrics (e.g., Mean, CVaR,

CDF) on the outcome. Their methods can be used to estimate quantiles of the outcomes
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under the target policy and are therefore robust to outliers. However, the resulting bounds

do not depend on the covariates X (not adaptive w.r.t. X). This can lead to overly

conservative intervals, as we will show in our experiments and can become uninformative

when the data are heteroscedastic (see Fig. 3.1b).

In this paper, we propose Conformal O�-Policy Prediction (COPP), a novel algorithm

that uses Conformal Prediction (CP) [Vovk et al., 2005] to construct predictive interval/sets

for outcomes in contextual bandits (see Fig.3.1a) using an observational dataset. COPP

enjoys both finite-sample theoretical guarantees and adaptivity w.r.t. the covariates X,

and, to the best of our knowledge, is the first such method based on CP that can be

applied to stochastic policies and continuous action spaces.

In summary, our contributions are:

(i) We propose an application of CP to construct predictive intervals for bandit outcomes

that is more general (applies to stochastic policies and continuous actions) than

previous work.

(ii) We provide theoretical guarantees for COPP, including finite-sample guarantees on

marginal coverage and asymptotic guarantees on conditional coverage.

(iii) We show empirically that COPP outperforms standard methods in terms of coverage

and predictive interval width when assessing new policies.

3.1.1 Problem setup

Let X be the covariate space (e.g., user data), A the action space (e.g., recommended

items) and Y the outcome space (e.g., relevance to the user). We allow both A and Y

to be either discrete or continuous. In our setting, we are given logged observational

data Dobs = {xi, ai, yi}
nobs
i=1 where actions are sampled from a behavioural policy fib, i.e.

A | x ≥ fib(· | x) and Y | x, a ≥ P (· | x, a). We assume that we do not su�er from

unmeasured confounding. At test time, we are given a state xtest and a new policy fiú.

While fib may be unknown, we assume the target policy fiú to be known.

We consider the task of rigorously quantifying the performance of fiú without any

distributional assumptions on X or Y . Many existing approaches estimate Efiú [Y ], which

is useful for comparing two policies directly as they return a single number. However, the
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expectation does not convey fine-grained information about how the policy performs for

a specific value of X, nor does it account for the uncertainty in the outcome Y .

Here, we aim to construct intervals/sets on the outcome Y which are (i) adaptive

w.r.t. X, (ii) capture the variability in the outcome Y and (iii) provide finite-sample

guarantees. Current methods lack at least one of these properties (see Sec. 3.5). One

way to achieve these properties is to construct a set-valued function of x, Ĉ(x) which

outputs a subset of Y . Given any finite dataset Dobs, this subset is guaranteed to contain

the true value of Y with any pre-specified probability, i.e.

1 ≠ – Æ P(X,Y )≥P fiú
X,Y

(Y œ Ĉ(X)) Æ 1 ≠ – + onobs
(1) (3.1)

where nobs is the size of available observational data and P fiú
X,Y is the joint distribution

of (X, Y ) under target policy fiú. In practice, Ĉ(x) can be used as a diagnostic tool

downstream for a granular assessment of likely outcomes under a target policy. The

probability in (3.1) is taken over the joint distribution of (X, Y ), meaning that (3.1) holds

marginally in X (marginal coverage) and not for a given X = x (conditional coverage). In

Sec. 3.4.2, we provide additional regularity conditions under which not only marginal but

also conditional coverage holds. Next, we introduce the Conformal Prediction framework,

which allows us to construct intervals Ĉ(x) that satisfy (3.1) along with properties (i)-(iii).

3.2 Background

Conformal prediction [Vovk et al., 2005, Shafer and Vovk, 2008] is a methodology that was

originally used to compute distribution-free prediction sets for regression and classification

tasks. Before introducing COPP, which applies CP to contextual bandits, we first illustrate

how CP can be used in standard regression.

3.2.1 Standard conformal prediction

Consider the problem of regressing Y œ Y against X œ X . Let f̂ be a model trained

on the training data Dtr = {X0
i , Y 0

i }
m
i=1

i.i.d.
≥ PX,Y and let the calibration data Dcal =

{Xi, Yi}
n
i=1

i.i.d.
≥ PX,Y be independent of Dtr. Given a desired coverage rate 1 ≠ – œ (0, 1),



3. Conformal O�-Policy Prediction in Contextual Bandits 42

we construct a band Ĉn : X æ {subsets of Y}, based on the calibration data such that,

for a new i.i.d. test data (X, Y ) ≥ PX,Y ,

1 ≠ – Æ P(X,Y )≥PX,Y
(Y œ Ĉn(X)) Æ 1 ≠ – + 1

n + 1 , (3.2)

where the probability is taken over X, Y and Dcal = {Xi, Yi}
n
i=1 and is conditional upon Dtr.

In order to obtain Ĉn satisfying (3.2), we introduce a non-conformity score function

Vi = s(Xi, Yi), e.g., (f̂(Xi) ≠ Yi)2. We assume here {Vi}
n
i=1 have no ties almost surely.

Intuitively, the non-conformity score Vi uses the outputs of the predictive model f̂ on

the calibration data, to measure how far o� these predictions are from the ground truth

response. Higher scores correspond to worse fit between x and y according to f̂ . We

define the empirical distribution of the scores {Vi}
n
i=1 fi {Œ}

F̂n := 1
n + 1

nÿ

i=1
”Vi + 1

n + 1”Œ (3.3)

with which we can subsequently construct the conformal interval Ĉn that satisfies (3.2) as fol-

lows:

Ĉn(x) := {y : s(x, y) Æ ÷} (3.4)

where ÷ is an empirical quantile of {Vi}
n
i=1, i.e. ÷ = Quantile1≠–(F̂n) is the 1 ≠ – quantile.

Intuitively, for roughly 100·(1≠–)% of the calibration data, the score values will be below

÷. Therefore, if the new datapoint (X, Y ) and Dcal are i.i.d., the probability P(s(X, Y ) Æ ÷)

(which is equal to P(Y œ Ĉn(X)) by (3.4)) will be roughly 1 ≠ –. Exchangeability of the

data is crucial for the above to hold. In the next section we will explain how Tibshirani

et al. [2019] relax the exchangeability assumption.

3.2.2 Conformal prediction under covariate shift

Tibshirani et al. [2019] extend the CP framework beyond the setting of exchangeable

data, by constructing valid intervals even when the calibration data and test data are

not drawn from the same distribution. The authors focus on the covariate shift scenario

i.e. the distribution of the covariates changes at test time:

(Xi, Yi) i.i.d
≥ PX,Y = PX ◊ PY |X , i = 1, . . . , n

(X, Y ) ≥ P̃X,Y = P̃X ◊ PY |X , independently
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where the ratio w(x) := dP̃X/dPX(x) is known. The key realization in Tibshirani

et al. [2019] is that the requirement of exchangeability in CP can be relaxed to a more

general property, namely weighted exchangeability (see Def. B.1.1). They propose a

weighted version of conformal prediction, which shifts the empirical distribution of non-

conformity scores, F̂n, at a point x, using weights w(x). This adjusts F̂n for the covariate

shift, before picking the quantile ÷:

F̂ x
n :=

nÿ

i=1
pw

i (x)”Vi + pw
n+1(x)”Œ where,

pw
i (x) = w(Xi)qn

j=1 w(Xj) + w(x) , pw
n+1(x) = w(x)

qn
j=1 w(Xj) + w(x) .

In standard CP (without covariate shift), the weight function satisfies w(x) = 1 for all x,

and we recover (3.3). Next, we construct the conformal prediction intervals Ĉn as in standard

CP using (3.4) where ÷ now depends on x due to pw
i (x). The resulting intervals, Ĉn, satisfy:

P(X,Y )≥P̃X,Y
(Y œ Ĉn(X)) Ø 1 ≠ –

As mentioned previously in Sec. 3.1.1, the above demonstrates marginal coverage guarantees

over test point X and calibration dataset Dcal, not conditional on a given X = x or a

fixed Dcal. We will discuss this nuance later on in Sec. 3.4.2. In addition, previous

work by Vovk shows that conditioned on a single calibration dataset, standard CP can

achieve coverage that is ‘close’ to the required coverage with high probability. However,

this has not been extended to the case where the distribution shifts. This is out of the

scope of this paper and an interesting future direction.

Thus Tibshirani et al. [2019] show that the CP algorithm can be extended to the setting

of covariate shift with the resulting predictive intervals satisfying the coverage guarantees

when the weights are known. The extension of these results to approximate weights was

proposed in Lei and Candès [2021] and is generalized to our setting in Sec. 3.4.

3.3 Conformal O�-Policy Prediction (COPP)

In the contextual bandits introduced in Sec. 3.1.1, we assume that the observational

data Dobs = {xi, ai, yi}
nobs
i=1 is generated from a behavioural policy fib. At inference time
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Algorithm 1: Conformal O�-Policy Prediction (COPP)
Inputs: Observational data Dobs = {Xi, Ai, Yi}

nobs
i=1 , conf. level –, a score function

s(x, y) œ R, new data point xtest, target policy fiú ;
Output: Predictive interval Ĉn(xtest);
Split Dobs into training data (Dtr) and calibration data (Dcal) of sizes m and n
respectively;

Use Dtr to estimate weights ŵ(·, ·) using (3.7);
Compute Vi := s(Xi, Yi) for (Xi, Ai, Yi) œ Dcal;
Let F̂ x,y

n be the weighted distribution of scores

F̂ x,y
n :=

nÿ

i=1
pŵ

i (x, y)”Vi + pŵ
n+1(x, y)”Œ

where pŵ
i (x, y) = ŵ(Xi,Yi)qn

j=1
ŵ(Xj ,Yj)+ŵ(x,y) and pŵ

n+1(x, y) = ŵ(x,y)qn

j=1
ŵ(Xj ,Yj)+ŵ(x,y) ;

For xtest construct: Ĉn(xtest):= {y : s(xtest, y) Æ Quantile1≠–(F̂ xtest,y
n )}

Return Ĉn(xtest)

we are given a new target policy fiú and want to provide intervals on the outcomes Y

for covariates X that satisfy (3.1).

The key insight of our approach is to consider the following joint distribution of (X, Y ):

P fib(x, y) =P (x)
⁄

P (y|x, a)fib(a|x)da = P (x)P fib(y|x)

P fiú(x, y) =P (x)
⁄

P (y|x, a)fiú(a|x)da = P (x)P fiú(y|x)

Therefore, the change of policies from fib to fiú causes a shift in the joint distributions

of (X, Y ) from P fib

X,Y to P fiú
X,Y . More precisely, a shift in the conditional distribution

of Y |X. As a result, our problem boils down to using CP in the setting where the

conditional distribution P fib

Y |X changes to P fiú
Y |X due to the di�erent policies, while the

covariate distribution PX remains the same.

Hence our problem is not concerned about covariate shift as addressed in Tibshirani

et al. [2019], but instead uses the idea of weighted exchangeability to extend CP to the

setting of policy shift. To account for this distributional mismatch, our method shifts

the empirical distribution of non-conformity scores at a point (x, y) using the weights

w(x, y) = dP fiú
X,Y /dP fib

X,Y (x, y) = dP fiú
Y |X/dP fib

Y |X(x, y) as follows:

F̂ x,y
n :=

nÿ

i=1
pw

i (x, y)”Vi + pw
n+1(x, y)”Œ, (3.5)
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where,

pw
i (x, y) = w(Xi, Yi)qn

j=1 w(Xj, Yj) + w(x, y) and,

pw
n+1(x, y) = w(x, y)

qn
j=1 w(Xj, Yj) + w(x, y) .

The intervals are then constructed as below which we call Conformal O�-Policy

Prediction (see Algorithm 1).

Ĉn(xtest) := {y : s(xtest, y) Æ ÷(xtest, y)} where, ÷(x, y) := Quantile1≠–(F̂ x,y
n ). (3.6)

Remark The weights w(x, y) in (3.5) depend on x and y, as opposed to only x. In

particular, finding the set of y’s satisfying (3.6) becomes more complicated than for the

standard covariate shifted CP which only requires a single computation of ÷(x) for a given

x as shown in (3.4). In our case however, we have to create a k sized grid of potential

values of y for every x to find Ĉn(x). This operation is embarrassingly parallel and hence

does not add much computational overhead compared to the standard CP, especially

because CP mainly focuses on scalar predictions.

3.3.1 Estimation of weights w(x, y)

So far we have been assuming that we know the weights w(x, y) exactly. However, in most

real-world settings, this will not be the case. Therefore, we must resort to estimating

w(x, y) using observational data. In order to do so, we first split the observational data into

training (Dtr) and calibration (Dcal) data. Next, using Dtr, we estimate fîb(a | x) ¥ fib(a | x)

and P̂ (y | x, a) ¥ P (y | x, a) (which is independent of the policy). We then compute

a Monte Carlo estimate of weights using the following:

ŵ(x, y) =
1
h

qh
k=1 P̂ (y|x, Aú

k)
1
h

qh
k=1 P̂ (y|x, Ak)

¥

s
P (y|x, a)fiú(a|x)da

s
P (y|x, a)fib(a|x)da

, (3.7)

where Ak ≥ fîb(· | x), Aú

k ≥ fiú(· | x) and h is the number of Monte Carlo samples.
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Why not construct intervals using P̂ (y|x, a) directly?

We could directly construct predictive intervals Ĉn(x) over outcomes by sampling

Yj
i.i.d.
≥ P̂ fiú(y|x) =

⁄
P̂ (y|x, a)fiú(a|x)da.

However, the coverage of these intervals directly depends on the estimation error of

P̂ (y|x, a). This is not the case in COPP, as the coverage does not depend on P̂ (y|x, a)

directly but rather on the estimation of ŵ(x, y) (see Prop. 3.4.2). We hypothesize that

this indirect dependence of COPP on P̂ (y|x, a) makes it less sensitive to the estimation

error. In Sec. 3.6, our empirical results support this hypothesis as COPP provides

more accurate coverage than directly using P̂ (y|x, a) to construct intervals. Lastly,

in Appendix B.2.5 we show how we can avoid estimating P̂ (y|x, a) by proposing an

alternative method for estimating the weights directly. We leave this for future work.

3.4 Theoretical guarantees

3.4.1 Marginal coverage

In this section we provide theoretical guarantees on marginal coverage P(X,Y )≥P fiú
X,Y

(Y œ

Ĉn(X)) for the cases where the weights w(x, y) are known exactly as well as when they

are estimated. Using the idea of weighted exchangeability, we extend [Tibshirani et al.,

2019, Theorem 2] to our setting.

Proposition 3.4.1

Let {Xi, Yi}
n
i=1

i.i.d.
≥ P fib

X,Y be the calibration data. For any score function s, and any

– œ (0, 1), define the conformal predictive interval at a point x œ Rd as

Ĉn(x) := {y œ R : s(x, y) Æ ÷(x, y)}

where ÷(x, y) := Quantile1≠–(F̂ x,y
n ), and F̂ x,y

n is as defined in (3.5) with exact weights

w(x, y). If P fiú(y|x) is absolutely continuous w.r.t. P fib(y|x), then Ĉn satisfies

P(X,Y )≥P fiú
X,Y

(Y œ Ĉn(X)) Ø 1 ≠ –.

Proposition 3.4.1 assumes exact weights w(x, y), which is usually not the case. For
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CP under covariate shift, Lei and Candès [2021] showed that even when the weights are

approximated, i.e., ŵ(x, y) ”= w(x, y), we can still provide finite-sample upper and lower

bounds on the coverage, albeit with an error term �w (defined in (3.8)). Next, we extend this

result to our setting when the weight function w(x, y) is approximated as in Section 3.3.1.

Proposition 3.4.2

Let Ĉn be the conformal predictive intervals obtained as in Proposition 3.4.1, with weights

w(x, y) replaced by approximate weights ŵ(x, y) = ŵ(x, y; Dtr), where the training data,

Dtr, is fixed. Assume that ŵ(x, y) satisfies (E(X,Y )≥P fib
X,Y

[ŵ(X, Y )r])1/r
Æ Mr < Œ

for some r Ø 2. Define �w as,

�w := 1
2E(X,Y )≥P fib

X,Y
| ŵ(X, Y ) ≠ w(X, Y ) | . (3.8)

Then, P(X,Y )≥P fiú
X,Y

(Y œ Ĉn(X)) Ø 1 ≠ – ≠ �w.

If, in addition, non-conformity scores {Vi}
n
i=1 have no ties almost surely, then we also have

P(X,Y )≥P fiú
X,Y

(Y œ Ĉn(X)) Æ 1 ≠ – + �w + cn1/r≠1,

for some positive constant c depending only on Mr and r.

Proposition 3.4.2 provides finite-sample guarantees with approximate weights ŵ(·, ·).

Note that if the weights are known exactly then the above proposition can be simplified

by setting �w = 0. In the case where the weight function is estimated consistently, we

recover the exact coverage asymptotically. A natural question to ask is whether the

consistency of ŵ(x, y) implies the consistency of P̂ (y|x, a); in which case one could use

P̂ (y|x, a) directly to construct the intervals. We prove that this is not the case in general

and provide detailed discussion in Appendix B.2.5.

3.4.2 Conditional coverage

So far we only considered marginal coverage (3.1), where the probability is over both X

and Y . Here, we provide results on conditional coverage PY ≥P fiú
Y |X

(Y œ Ĉn(X) | X) which

is a strictly stronger notion of coverage than marginal coverage [Foygel Barber et al., 2021].

Vovk [2012], Lei and Wasserman [2014] prove that exact conditional coverage cannot be

achieved without making additional assumptions. However, we show that, in the case where
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Y is a continuous random variable and we can estimate the quantiles of P fiú
Y |X consistently,

we get an approximate conditional coverage guarantee using the below proposition.

Proposition 3.4.3 (Asymptotic conditional coverage)
Let m, n be the number of training and calibration data respectively, q̂—,m(x) =

q̂—,m(x; Dtr) be an estimate of the —-th conditional quantile q—(x) of P fiú
Y |X=x, ŵm(x, y) =

ŵm(x, y; Dtr) be an estimate of w(x, y) and Ĉm,n(x) be the conformal interval resulting

from algorithm 1 with score function s(x, y) = max{y ≠ q̂–hi
(x), q̂–lo

(x) ≠ y} where

–hi ≠ –lo = 1 ≠ –. Assume that the following hold:

1. limmæŒ E(X,Y )≥P fib
X,Y

|ŵm(X, Y ) ≠ w(X, Y )| = 0.

2. there exists r, b1, b2 > 0 such that P fiú(y | x) œ [b1, b2] uniformly over all (x, y) with

y œ [q–lo
(x) ≠ r, q–lo

(x) + r] fi [q–hi
(x) ≠ r, q–hi

(x) + r],

3. ÷k > 0 s.t. limmæŒ EX≥PX [Hk
m(X)] = 0 where

Hm(x) = max{|q̂–lo,m(x) ≠ q–lo
(x)|, |q̂–hi,m(x) ≠ q–hi

(x)|}

Then for any t > 0, we have that limm,næŒ P(PY ≥P fiú
Y |X

(Y œ Ĉm,n(X) | X) Æ 1≠–≠t) = 0.

One caveat of Prop. 3.4.3 is that Assumption 3 is rather strong. In general, consistently

estimating the quantiles under the target policy fiú is not straightforward given that we

only have access to observational data from fib. While one can use a weighted pinball loss

to estimate quantiles under fiú, consistent estimation of these quantiles would require a

consistent estimate of the weights (see Appendix B.3). Hence, unlike [Lei and Candès,

2021, Theorem 1], our Prop. 3.4.3 is not a “doubly robust” result.

Towards group balanced coverage
As pointed out by Angelopoulos and Bates [2021], we may want predictive intervals

that have the same coverage across di�erent groups, e.g., across male and female users

[Romano et al., 2020]. Standard CP will not necessarily achieve this, as the coverage

guarantee (3.1) is over the entire population of users. However, we can use COPP on

each subgroup separately to obtain group balanced coverage. A more detailed discussion

on how to construct such intervals has been included in Appendix B.2.4.
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3.5 Related work

Conformal prediction A number of works have explored the use of CP under dis-

tribution shift. The works of Tibshirani et al. [2019] and Lei and Candès [2021] are

particularly notable as they extend CP to the general setting of weighted exchangeability.

In particular, Lei and Candès [2021] use CP for counterfactual inference where the goal

is to obtain predictive intervals on the outcomes of treatment and control groups. The

authors formulate the counterfactual setting into that of covariate shift in the input space

X and show that under certain assumptions, finite-sample coverage can be guaranteed.

Fundamentally, our work di�ers from Lei and Candès [2021] by framing the problem as

a shift in the conditional PY |X rather than as a shift in the marginal PX . The resulting

methodology we obtain from this then di�ers from Lei and Candès [2021] in a variety

of ways. For example, while Lei and Candès [2021] assume a deterministic target policy,

COPP can also be applied to stochastic target policies, which have been used in a variety

of applications, such as recommendation systems or RL applications [Swaminathan et al.,

2017a, Su et al., 2020, Farajtabar et al., 2018a]. Likewise, unlike Lei and Candès [2021],

COPP is applicable to continuous action spaces, e.g., doses of medication administered.

In addition, when the target policy is deterministic, there is an important methodological

di�erence between COPP and Lei and Candès [2021]. In particular, Lei and Candès

[2021] construct the intervals on outcomes by splitting calibration data w.r.t. actions. In

contrast, it can be shown that COPP uses the entire calibration data when constructing

intervals on outcomes. This is a consequence of integrating out the actions in the weights

w(x, y) (3.7), and empirically leads to smaller variance in coverage compared to Lei

and Candès [2021]. See B.2.1 for the experimental results comparing COPP to Lei and

Candès [2021] for deterministic policies.

Osama et al. [2020] propose using CP to construct robust policies in contextual bandits

with discrete actions. Their methodology uses CP to choose actions and does not involve

evaluating target policies. Hence, the problem being considered is orthogonal to ours.

There has also been concurrent work adapting CP to individual treatment e�ect (ITE)

sensitivity analysis model [Jin et al., 2021, Yin et al., 2021]. Similar to our approach, these

works formulate the sensitivity analysis problem as one of CP under the joint distribution
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shift PX,Y . While our methodologies are related, the application of CP explored in these

works, i.e. ITE estimation under unobserved confounding, is fundamentally di�erent.

Uncertainty in contextual bandits Recall from the introduction, that most works

in this area have focused on quantifying uncertainty in expected outcome (policy value)

[Dudík et al., 2014a, Kuzborskij et al., 2021]. Despite providing finite sample-guarantees

on the expectation, these methods do not account for the variability in the outcome itself

and in general are not adaptive w.r.t. X, i.e. they do not satisfy properties (i), (ii)

from Sec. 3.1.1. Huang et al. [2021], Chandak et al. [2021] on the other hand, propose

o�-policy assessment algorithms for contextual bandits w.r.t. a more general class of

risk objectives such as Mean, CVaR etc. Their methodologies can be applied to our

problem, to construct predictive intervals for o�-policy outcomes. However, unlike COPP,

these intervals are not adaptive w.r.t. X, i.e. do not satisfy property (i) in Sec. 3.1.1.

Moreover, they do not provide upper bounds on coverage probability, which often leads

to overly conservative intervals, as shown in our experiments. Lastly, while distributional

perspective has been explored in reinforcement learning [Bellemare et al., 2017], no finite

sample-guarantees are available to the best of our knowledge.

3.6 Experiments

Baselines for comparison Given our problem setup, there are no established baselines.

Instead, we compare our proposed method COPP to the following competing methods,

which were constructed to capture the uncertainty in the outcome distribution and take

into account the policy shift.

Weighted Importance Sampling (WIS) CDF estimator Given observational dataset

Dobs = {xi, ai, yi}
nobs
i=1 , Huang et al. [2021] proposed a non-parametric WIS-based estimator

for the empirical CDF of Y under fiú, F̂W IS(t) :=
qnobs

i=1
fl̂(ai,xi) (yiÆt)qnobs

i=1
fl̂(ai,xi)

where fl̂(a, x) := fiú(a|x)
fîb(a|x)

are the importance weights. We can use F̂W IS to get predictive intervals [y–/2, y1≠–/2]

where y— := Quantile—(F̂W IS). The intervals [y–/2, y1≠–/2] do not depend on x.
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Table 3.1: Toy experiment results with required coverage 90%. While WIS intervals provide
required coverage, the mean interval length is huge compared to COPP (see table 3.1b).

(a) Mean coverage as a function of policy shift with
2 standard errors over 10 runs.

Coverage �‘ = 0.0 �‘ = 0.1 �‘ = 0.2
COPP (Ours) 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.01
WIS 0.89 ± 0.01 0.91 ± 0.02 0.94 ± 0.02
SBA 0.90 ± 0.01 0.88 ± 0.01 0.87 ± 0.01

COPP (GT weights Ours) 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01
CP (no policy shift) 0.90 ± 0.01 0.87 ± 0.01 0.85 ± 0.01
CP (union) 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

(b) Mean interval length as a function of policy
shift with 2 standard errors over 10 runs.

Interval Lengths �‘ = 0.0 �‘ = 0.1 �‘ = 0.2
COPP (Ours) 9.08 ± 0.10 9.48 ± 0.22 9.97 ± 0.38
WIS 24.14 ± 0.30 32.96 ± 1.80 43.12 ± 3.49
SBA 8.78 ± 0.12 8.94 ± 0.10 8.33 ± 0.09

COPP (GT weights Ours) 8.91 ± 0.09 9.25 ± 0.12 9.59 ± 0.20
CP (no policy shift) 9.00 ± 0.10 9.00 ± 0.10 9.00 ± 0.10
CP (union) 10.66 ± 0.18 11.04 ± 0.2 11.4 ± 0.26

Sampling Based Approach (SBA) As mentioned in Sec. 3.3.1, we can directly use

the estimated P̂ (y | x, a) to construct the predictive intervals as follows. For a given xtest,

we generate Ai
i.i.d.
≥ fiú(· | xtest), and Yi ≥ P̂ (· | xtest, Ai) for i Æ ¸. We then define the

predictive intervals for xtest using the –/2 and 1 ≠ –/2 quantiles of {Yi}iÆ¸. While SBA

is not a standard baseline, it is a natural comparison to make to answer the question

of “why not construct the intervals using P̂ (y|x, a) directly”?

3.6.1 Toy experiment

We start with synthetic experiments and an ablation study, in order to dissect and

understand our proposed methodology in more detail. We assume that our policies are

stationary and there is overlap between the behaviour and target policy, both of which

are standard assumptions [Huang et al., 2021, Su et al., 2019a, Xie et al., 2019a].

Synthetic data experiments setup

In order to understand how COPP works, we construct a simple experimental setup where we

can control the amount of “policy shift” and know the ground truth. In this experiment, X œ

R, A œ {1, 2, 3, 4} and Y œ R, where X and Y | x, a are normal random variables. Further

details and additional experiments on continuous action spaces are given in Appendix B.4.1.

Behaviour and target policies We define a family of policies fi‘(a | x), where we use

the parameter ‘ œ (0, 1/3) to control the policy shift between target and behaviour policies.

Exact form of fi‘(a | x) is given in B.4.1. For the behaviour policy fib, we use ‘b = 0.3 (i.e.

fib(a | x) © fi0.3(a | x)), and for target policies fiú, we use ‘ú
œ {0.1, 0.2, 0.3}. Using the

true behaviour policy, fib, we generate observational data Dobs = {xi, ai, yi}
nobs
i=1 which is

then split into training (Dtr) and calibration (Dcal) datasets, of sizes m and n respectively.
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Estimation of ratios, ŵ(x, y) Using the training dataset Dtr, we estimate P (y|x, a)

as P̂ (y|x, a) = N (µ(x, a), ‡(x, a)), where µ(x, a), ‡(x, a) are both neural networks (NNs).

Similarly, we use NNs to estimate the behaviour policy fîb from Dtr. Next, to estimate

ŵ(x, y), we use (3.7) with h = 500.

Score For the score function, we use the same formulation as in Romano et al. [2019],

i.e. s(x, y) = max{q̂–lo
(x) ≠ y, y ≠ q̂–hi

(x)}, where q̂—(x) denotes the — quantile estimate

of P fib

Y |X=x trained using pinball loss.

Lastly, our weights w(x, y) depend on x and y and hence we use a grid of 100 equally

spaced out y’s in our experiments to determine the predictive interval which satisfies

Ĉn(x) := {y : s(x, y) Æ Quantile1≠–(F̂ x,y
n )}. This is parallelizable and hence does not

add much computational overhead.

Results Table 3.1a shows the coverages of di�erent methods as the policy shift �‘ = ‘b
≠‘ú

increases. The behaviour policy fib = fi0.3 is fixed and we use n = 5000 calibration

datapoints, across 10 runs. Table 3.1a shows, how COPP stays very close to the required

coverage of 90% across all target policies compared to WIS and SBA. WIS intervals are

overly conservative i.e. above the required coverage, while the SBA intervals su�er from

under-coverage i.e. below the required coverage. These results supports our hypothesis

from Sec. 3.3.1, which stated that COPP is less sensitive to estimation errors of P̂ (y|x, a)

compared to directly using P̂ (y|x, a) for the intervals, i.e. SBA.

Next, Table 3.1b shows the mean interval lengths and even though WIS has reasonable

coverage for �‘ = 0.0 and 0.1, the average interval length is huge compared to COPP. Fig.

3.1b shows the predictive intervals for one such experiment with fiú = fi0.1 and fib = fi0.3. We

can see that SBA intervals are overly optimistic, while WIS intervals are too wide and are not

adaptive w.r.t. X. COPP produces intervals which are much closer to the oracle intervals.

Ablation study

To isolate the e�ect of weight estimation error and policy shift, we conduct an ablation

study, comparing COPP with estimated weights to COPP with Ground Truth (GT) weights

and standard CP (assuming no policy shift). Table 3.1a shows that at �‘ = 0, i.e. no policy

shift, standard CP achieves the required coverage as expected. However the coverage of
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Table 3.2: Mean coverage as a function of policy shift �‘ and 2 standard errors over 10 runs.
COPP attains the required coverage of 90%, whereas the competing methods, WIS and SBA, are
over-conservative i.e. coverage above 90%. In addition, when we do not account for the policy
shift, standard CP becomes progressively worse with increasing policy shift.

�‘ = 0.0 �‘ = 0.1 �‘ = 0.2 �‘ = 0.3 �‘ = 0.4
COPP (Ours) 0.90 ± 0.00 0.90 ± 0.02 0.90 ± 0.01 0.89 ± 0.01 0.91 ± 0.01
WIS 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.00 0.94 ± 0.00 0.91 ± 0.00
SBA 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.96 ± 0.00

CP (no policy shift) 0.91 ± 0.02 0.92 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 0.96 ± 0.01

standard CP intervals decreases as the policy shift �‘ increases. COPP, on the other hand,

attains the required coverage of 90%, by adapting the predictive intervals with increasing

policy shift. Table 3.1b shows that the average interval length of COPP increases with

increasing policy shift �‘. Furthermore, Table 3.1a illustrates that while COPP achieves

the required coverage for di�erent target policies, on average it is slightly more conservative

than using COPP with GT weights. This can be explained by the estimation error in

ŵ(x, y). Additionally, to investigate the e�ect of integrating out the actions in (3.7), we

also perform CP for each action a separately (as in Lei and Candès [2021]) and then take

the union of the intervals across these actions. In the union method, the probability of

an action being chosen is not taken into account, (i.e., intervals are independent of fiú)

and hence the coverage is overly conservative as expected.

Lastly, we investigate how increasing the number of calibration data n a�ects the

coverage for all the methodologies. We observe that coverage of COPP is closer to

the required coverage of 90% compared to the competing methodologies. Additionally,

the coverage of COPP converges to the required coverage as n increases; see Appendix

B.4.1 for detailed experimental results.

3.6.2 Experiments on Microsoft Ranking Dataset

We now apply COPP onto a real dataset i.e. the Microsoft Ranking dataset 30k [Qin and

Liu, 2013, Swaminathan et al., 2017a, Bietti et al., 2018]. Due to space constraints, we

have added additional extensive experiments on UCI datasets in Appendix B.4.3.

Dataset The dataset contains relevance scores for websites recommended to di�erent

users, and comprises of 30, 000 user-website pairs. For each user-website pair, the data

contains a 136-dimensional feature vector, which consists of user’s attributes corresponding
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to the website, such as length of stay or number of clicks on the website. Furthermore, for

each user-website pair, the dataset also contains a relevance score, i.e. how relevant

the website was to the user.

First, given a user, we sample (with replacement) 5 websites from the data corresponding

to that user. Next, we reformulate this into a contextual bandit where ai œ {1, 2, 3, 4, 5}

corresponds to the action of recommending the ai’th website to the user i. xi is obtained

by combining the 5 user-website feature vectors corresponding to the user i i.e. xi œ

R5◊136. yi œ {0, 1, 2, 3, 4} corresponds to the relevance score for the ai’th website, i.e. the

recommended website. The goal is to construct prediction sets that are guaranteed to

contain the true relevance score with a probability of 90%.

Behaviour and target policies We first train a NN classifier model, f̂◊, mapping

each 136-dimensional user-website feature vector to the softmax scores for each relevance

score class. We use this trained model f̂◊ to define a family of policies which pick the

most relevant website as predicted by f̂◊ with probability ‘ and the rest uniformly with

probability (1 ≠ ‘)/4 (see Appendix B.4.2 for more details). Like the previous experiment,

we use ‘ to control the shift between behaviour and target policies. For fib, we use

‘b = 0.5 and for fiú, ‘ú
œ {0.1, 0.2, 0.3, 0.4, 0.5}.

Estimation of ratios ŵ(X, Y ) To estimate the P̂ (y | x, a) we use the trained model

f̂◊ as detailed in Appendix B.4.2. To estimate the behaviour policy fîb, we train a neural

network classifier model X æ A, and we use (3.7) to estimate the weights ŵ(x, y).

Score The space of outcomes Y in this experiment is discrete. We define P̂ fib(y |

x) = q5
i=1 fîb(A = i|x)P̂ (y|x, A = i). Using similar formulation as in Angelopoulos

and Bates [2021], we define the score:

s(x, y) =
4ÿ

yÕ=0
P̂ fib(yÕ

| x) (P̂ fib(yÕ
| x) Ø P̂ fib(y | x)).

Since Y is discrete, we no longer need to construct a grid of y values on which to compute

Quantile1≠–(F̂ x,y
n ). Instead, we will simply compute this quantity on each y œ Y, when

constructing the predictive sets Ĉn(xtest).
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Results Table 3.2 shows the coverages of di�erent methodologies across varying target

policies fi‘ú . The behaviour policy fib = fi0.5 is fixed and we use n = 5000 calibration

datapoints, across 10 runs. Table 3.2 also shows that the coverage of WIS and SBA sets is

dependent upon the policy shift, with both being overly conservative across the di�erent

target policies as compared to COPP. Recall that the WIS sets do not depend on xtest

and as a result we get the same set for each test data point. This becomes even more

problematic when Y is discrete – if, for each label y, P(X,Y )≥P fiú
X,Y

(Y = y) > 10%, then

WIS sets (with the required coverage of 90%) are likely to contain every label y œ Y . In

comparison, COPP is able to stay much closer to the required coverage of 90% across all

target policies. We have also added standard CP without policy shift as a sanity check,

and observed that the sets get increasingly conservative as the policy shift increases.

Finally, we also plotted how the coverage changes as the number of calibration data

n increases. We observe again that the coverage of COPP is closer to the required

coverage of 90% compared to the competing methodologies. Due to space constraints,

we have added the plots in Appendix B.4.2.

Class-balanced conformal prediction Using the methodology described in Sec. 3.4.2,

we construct predictive sets, ĈY

n (x), which o�er label conditioned coverage guarantees

(see B.2.4), i.e. for all y œ Y,

P(X,Y )≥P fiú
X,Y

(Y œ ĈY

n (X) | Y = y) Ø 1 ≠ –.

We empirically demonstrate that ĈY

n provides label conditional coverage, while Ĉn obtained

using alg. 1 may not. Due to space constraints, details on construction of ĈY

n as well

as experimental results have been included in Appendix B.4.2.

3.7 Conclusion and limitations

In this paper, we propose COPP, an algorithm for constructing predictive intervals on o�-

policy outcomes, which are adaptive w.r.t. covariates X. We theoretically prove that COPP

can guarantee finite-sample coverage by adapting the framework of conformal prediction

to our setup. Our experiments show that conventional methods cannot guarantee any

user pre-specified coverage, whereas COPP can. For future work, it would be interesting
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to apply COPP to policy training. This could be a step towards robust policy learning

by optimising the worst case outcome [Stutz et al., 2022].

We conclude by mentioning several limitations of COPP. Firstly, we do not guarantee

conditional coverage in general. We outline conditions under which conditional coverage

holds asymptotically (Prop. 3.4.3), however, this relies on somewhat strong assumptions.

Secondly, our current method estimates the weights w(x, y) through P (y | x, a), which

can be challenging. We address this limitation in Appendix B.2.5, where we propose

an alternative method to estimate the weights directly, without having to model P (y |

x, a). Lastly, reliable estimation of our weights ŵ(x, y) requires su�cient overlap between

behaviour and target policies. The results from COPP may su�er in cases where this

assumption is violated, which we illustrate empirically in Appendix B.4.1. We believe these

limitations suggest interesting research questions that we leave to future work.
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Abstract

Digital twins are simulation-based models designed to predict how a real-world process will

evolve in response to interventions. This modelling paradigm holds substantial promise

in many applications, but rigorous procedures for assessing their accuracy are essential

for safety-critical settings. We consider how to assess the accuracy of a digital twin

using real-world data. We formulate this as causal inference problem, which leads to a

precise definition of what it means for a twin to be “correct”. Unfortunately, fundamental

results from causal inference mean observational data cannot be used to certify a twin

in this sense unless potentially tenuous assumptions are made, such as that the data are

unconfounded. To avoid these assumptions, we propose instead to find situations in which

the twin is not correct, and present a general-purpose statistical procedure for doing so.

Our approach yields reliable and actionable information about the twin under only the

assumption of an i.i.d. dataset of observational trajectories, and remains sound even if

the data are confounded. We apply our methodology to a large-scale, real-world case

study involving sepsis modelling within the Pulse Physiology Engine, which we assess

using the MIMIC-III dataset of ICU patients.



4.1 Introduction
4.1.1 Motivation

There is increasing interest in the use of simulation-based models for obtaining causal

insights. Such models aim to describe what would occur when di�erent actions or

interventions are applied to some real-world process of interest, thereby allowing planning

and decision-making to be done with a fuller understanding of the di�erent outcomes

that may result. In many applications, models of this kind are referred to as digital twins

[Barricelli et al., 2019, Jones et al., 2020, Niederer et al., 2021]. These have been considered

for a wide range of use-cases including aviation [Bellinger et al., 2011], manufacturing [Lu

et al., 2020], healthcare [Corral-Acero et al., 2020, Coorey et al., 2022], civil engineering

[Sacks et al., 2020], and agriculture [Jans-Singh et al., 2020].

Many applications of digital twins are considered safety-critical, which means the cost of

deploying an inaccurate twin to production is potentially very high. As such, methodology

for assessing the performance of a twin before its deployment is essential for the safe,

widespread adoption of digital twins in practice [Niederer et al., 2021]. In this work, we

consider the problem of assessing twin accuracy and propose a concrete, theoretically

grounded, and general-purpose methodology to this end. We focus specifically on the use

of statistical methods that leverage data obtained from the real-world process that the

twin is designed to model. Such strategies are increasingly viable for many applications as

datasets grow larger, and o�er the promise of lower overheads compared with alternative

strategies that rely for instance on domain expertise.

We formulate twin assessment as a problem of causal inference [Rubin, 1974, 2005,

Pearl, 2009, Hernán and Robins, 2020]. In particular, we consider a twin to be accurate if

it correctly captures the behaviour of a real-world process of interest in response to certain

interventions, rather than the behaviour of the process as it evolves on its own. This

seems in keeping with the overall (if often implicit) design objectives that underlie many

applications, including those cited above. Our causal assessment approach also highlights

certain pitfalls associated with conventional methods that do not account for causal factors,

and that can give rise to misleading inferences about the twin as a result.

In most cases, it is desirable for an assessment procedure to be reliable and robust,

and for its conclusions about the twin to be highly trustworthy. As such, our goal in this
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paper is to obtain a methodology that is always sound, even possibly at the expense of

being conservative: we prefer not to draw any conclusion about the accuracy of the twin

at all than to draw some conclusion that is potentially misleading. To this end, we rely on

minimal assumptions about the twin and the real-world process of interest. In addition

to improving robustness, this also means our resulting methodology is very general, and

may be applied to a wide variety of twins across application domains.

4.1.2 Contribution

We begin by providing a causal model for a general-purpose twin and the data we have

available for assessment. We use this to show precisely that it is not possible to use

observational data to certify that the twin is causally accurate unless strong and often

tenuous assumptions are made about the data-generating process, such as that the data are

free of unmeasured confounding. To avoid these assumptions, we propose an assessment

paradigm instead based on falsification: we search for specific cases when the twin is not

accurate, rather than trying to quantify its accuracy in a more holistic sense.

To obtain a practical methodology suitable for real twins, we provide a novel set of

longitudinal causal bounds that hold without additional causal assumptions. These bounds

generalize the classical bounds of Manski [1990], and can be considerably more informative in

comparison. We use this result as the basis for a general-purpose statistical testing procedure

for falsifying a twin. Overall, our method relies on only the assumption of an independent

and identically distributed (i.i.d.) dataset of observational trajectories: it does not require

modelling the dynamics of the real-world process or any internal implementation details of

the twin, and remains sound in the presence of arbitrary unmeasured confounding. We

demonstrate the e�ectiveness of our procedure through a large-scale, real-world case study in

which we use the MIMIC-III ICU dataset [Johnson et al., 2016] to assess the Pulse Physiology

Engine [Bray et al., 2019], an open-source model for human physiology simulation.

4.1.3 Related work

Various high-level guidelines and workflows have been proposed for the assessment of digital

twins in the literature to-date [Roy and Oberkampf, 2011, Grieves and Vickers, 2017, Khan

et al., 2018, Corral-Acero et al., 2020, Kochunas and Huan, 2021, Niederer et al., 2021,
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Dahmen et al., 2022]. In some cases, these guidelines have been codified as standards:

for example, the ASME V&V40 Standard [AMSE, 2018] provides a risk-based framework

for assessing the credibility of a model from a variety of factors that include source code

quality and the mathematical form of the model [Galappaththige et al., 2022]. However, a

significant gap still exists between these guidelines and a practical implementation that

could be deployed for real twins, and the need for a rigorous lower-level framework to

enable the systematic assessment of twins has been noted in this literature [Corral-Acero

et al., 2020, Niederer et al., 2021, Kapteyn et al., 2021, Masison et al., 2021]. We contribute

towards this e�ort by describing a precise statistical methodology for twin assessment

that can be readily implemented in practice, and which is accompanied by theoretical

guarantees of robustness that hold under minimal assumptions.

In addition, a variety of concrete assessment procedures have been applied to certain

specific digital twin models in the literature. For example, the Pulse Physiology Engine [Bray

et al., 2019], which we consider in our empirical case study, as well as the related BioGears

[McDaniel et al., 2019, McDaniel and Baird, 2019] were both assessed by comparing their

outputs with ad hoc values based either on available medical literature or the opinions

of subject matter experts. Other twins have been assessed by comparing their outputs

with real-world data through a variety of bespoke numerical schemes [Larrabide et al.,

2012, Hemmler et al., 2019, Lal et al., 2021, Jans-Singh et al., 2020, Galappaththige et al.,

2022]. In contrast, our paper proposes a general-purpose statistical procedure for assessing

twins that may be applied generically across many applications and architectures. To

the best of our knowledge, our paper is also the first to identify the need for a causal

approach to twin assessment and the pitfalls that arise when causal considerations are

not properly accounted for.

4.2 Causal formulation

4.2.1 The real-world process

We begin by providing a causal model the real-world process that the twin is designed to

simulate. We do so in the language of potential outcomes [Rubin, 1974, 2005], although

we note that we could have used the alternative framework of directed acyclic graphs and

structural causal models [Pearl, 2009] (see also Imbens [2020] for a comparison of the
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two). We assume the real-world process operates over a fixed time horizon T œ {1, 2, . . .}.

This simplifies our presentation in what follows, and it is straightforward to generalize

our methodology to variable length time horizons if needed. For each t œ {0, . . . , T}, we

assume the process gives rise to an observation at time t, which takes values in some

real-valued space Xt := Rdt . We also assume that the process can be influenced by some

action taken at each time t œ {1, . . . , T}. We denote the space of actions available at

time t by At, which in this work we assume is always finite. For example, in a robotics

context, the observations may consist of all the readings of all the sensors of the robot,

and the actions may consist of commands that can be input by an external user. In a

medical context, the observations may consist of the vital signs of a patient, and the

actions may consist of possible treatments or interventions. To streamline notation, we will

index these spaces using vector notation, so that e.g. A1:t denotes the cartesian product

A1 ◊ · · · ◊ At, and a1:t œ A1:t is a choice of a1 œ A1, . . . , at œ At.

We model the dynamics of the real-world process via the longitudinal potential outcomes

framework proposed by Robins [1986], which imposes only a weak temporal structure on the

underlying phenomena of interest and so may be applied across a wide range of applications

in practice. In particular, for each a1:T œ A1:T , we posit the existence of random variables

or potential outcomes X0, X1(a1), . . . , XT (a1:T ), where Xt(a1:t) takes values in Xt. We will

denote this sequence more concisely as X0:T (a1:T ). Intuitively, X0 represents data available

before the first action, while X1:T (a1:T ) represents the sequence of real-world outcomes

that would occur if actions a1:T were taken successively. These quantities are therefore of

fundamental interest for planning a course of actions to achieve some desired result.

As random variables, each Xt(a1:t) may depend on additional randomness that is not

explicitly modelled, and so in particular may be influenced by all the previous potential

outcomes X0:t≠1(a1:t≠1), and possibly other random quantities. This models a process

whose initial state is determined by external factors, such as when a patient from some

population first presents at a hospital, and where the process then evolves according to

specific actions chosen from A1:T as well as additional external factors. It is clear that

this structure applies to a wide range of phenomena occurring in practice.
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4.2.2 The digital twin

We think of the twin as a computational device that, when executed, outputs a sequence

of values intended to simulate a possible future trajectory of the real-world process when

certain actions in A1:T are chosen, conditional on some initial data in X0. We allow the

twin to make use of an internal random number generator to produce outputs that vary

stochastically even under fixed inputs (although our framework encompasses twins that

evolve deterministically also). By executing the twin repeatedly, a user may therefore

estimate the range of behaviours that the real-world process may exhibit under di�erent

action sequences, which can then inform planning and decision-making downstream.

Precisely, we model the output the twin would produce at timestep t œ {1, . . . , T}

after receiving initialisation x0 œ X0 and successive inputs a1:t œ A1:t as the quantity

ht(x0, a1:t, U1:t), where ht is a measurable function taking values in Xt, and each Us is some

(possibly vector-valued) random variable. We will denote „Xt(x0, a1:t) := ht(x0, a1:t, U1:t),

which we also refer to as a potential outcome. A full twin trajectory therefore consists

of „X1(x0, a1), . . . , „XT (x0, a1:T ), which we write more compactly by „X1:T (x0, a1:T ). Con-

ceptually, h1, . . . , hT constitute the program that executes inside the twin, and U1:T may

be thought of as the collection of all outputs of the internal random number generator

that the twin uses. We assume these random numbers U1:T and the real-world outcomes

(X0:T (a1:T ) : a1:T œ A1:T ) are independent, which is mild in practice. We also assume that

repeated executions of the twin give rise to i.i.d. copies of U1:T . This means that, given fixed

inputs x0 and a1:T , repeated executions of the twin produce i.i.d. copies of „X1:T (x0, a1:T ).

Otherwise, we make no assumptions about the precise form of either the ht or the Ut,

which allows our model to encompass a wide variety of possible twin implementations.

4.2.3 Correctness

Before we can consider how to assess the twin, we must first define how we want the twin

ideally to behave. The following condition seems appropriate for many applications.

Definition 4.2.1 (Correctness)
The twin is interventionally correct if, for Law[X0]-almost all x0 and a1:T œ A1:T , distribu-

tion of „X1:T (x0, a1:T ) is equal to the conditional distribution of X1:T (a1:T ) given X0 = x0.
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Operationally, if a twin is interventionally correct, then by repeatedly executing the

twin and applying Monte Carlo techniques, it is possible to approximate arbitrarily well

the conditional distribution of the future of the real-world process under each possible

choice of action sequence. The same can also be shown to hold when each action at each

time t is chosen dynamically on the basis of previous observations in X0:t. As a result, an

interventionally correct twin may be used for planning, or in other words may be used to

select a policy for choosing actions that will yield a desirable distribution over observations

at each step. We emphasise that interventional correctness does not mean the twin will

accurately predict the behaviour of any specific trajectory of the real-world process in an

almost sure sense (unless the real-world process is deterministic), but only the distribution

of outcomes that will be observed over repeated independent trajectories. However, this is

su�cient for many applications, and appears to be the strongest guarantee possible when

dealing with real-world phenomena whose underlying behaviour is stochastic.

Definition 4.2.1 introduces some technical di�culties that arise in the general case when

conditioning on events with probability zero (e.g. {X0 = x0} if X0 is continuous). In what

follows, it is more convenient to consider an unconditional formulation of interventional

correctness. This is supplied by the following result, which considers the behaviour of the

twin when it is initialised with the (random) value of X0 taken from the real-world process,

rather than with a fixed choice of x0. See Section C.2 of the Appendix for a proof.

Proposition 4.2.1
The twin is interventionally correct if and only if, for all choices of a1:T œ A1:T , the

distribution of (X0, „X1:T (X0, a1:T )) is equal to the distribution of X0:T (a1:T ).

4.2.4 Online prediction

Our model here represents a twin at time t = 0 making predictions about all future timesteps

t œ {1, . . . , T} under di�erent choices of inputs a1:T . In practice, many twins are designed to

receive new information at each timestep in an online fashion and update their predictions for

subsequent timesteps accordingly [Grieves and Vickers, 2017, Niederer et al., 2021]. Various

notions of correctness can be devised for this online setting. We describe two possibilities

in Section C.3 of the Appendix, and show that these notions of correctness essentially

reduce to Definition 4.2.1, which motivates our focus on that notion in what follows.
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4.3 Data-driven twin assessment

4.3.1 Overall setup

There are many conceivable methods for assessing the accuracy of a twin, including static

analysis of the twin’s source code and the solicitation of domain expertise, and in practice

it seems most robust to use a combination of di�erent techniques rather than relying on

any single one [AMSE, 2018, Niederer et al., 2021]. However, in this paper, we focus

on what we will call data-driven assessment, which we see as an important component

of a larger assessment pipeline. That is, we consider the use of statistical methods that

rely solely on a dataset of trajectories obtained from the real-world process and the twin.

We show in this section that without further assumptions, it is not possible to obtain a

data-driven assessment procedure that can certify that a twin is interventionally correct.

We instead propose a strategy based on falsifying the twin, which we develop into a

concrete statistical testing procedure in later sections.

We will assume access to a dataset of trajectories obtained by observing the interaction

of some behavioural agents with the real-world process. We model each trajectory as

follows. First, we represent the action chosen by the agent at time t œ {1, . . . , T} as an

At-valued random variable At. We then obtain a trajectory in our dataset by recording at

each step the action At chosen and the observation Xt(A1:t) corresponding to this choice

of action. As a result, each observed trajectory has the following form:

X0, A1, X1(A1), . . . , AT , XT (A1:T ). (4.1)

This corresponds to the standard consistency assumption in causal inference [Hernán

and Robins, 2020], and intuitively means that the potential outcome Xt(a1:t) is observed

in the data when the agent actually chose A1:t = a1:t. We model our full dataset as

a set of i.i.d. copies of (4.1).

4.3.2 Certification is unsound in general

A natural high-level strategy for twin assessment has the following structure. First, some

hypothesis H is chosen with the following property:

If H is true, then the twin is interventionally correct. (4.2)
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Data is then used to try to show H is true, perhaps up to some level of confidence. If

successful, it follows by construction that the twin is interventionally correct. Assessment

procedures designed to certify the twin in this way are appealing because they promise a

strong guarantee of accuracy for certified twins. Unfortunately, the following foundational

result from the causal inference literature (often referred to as the fundamental problem of

causal inference [Holland, 1986]) means that data-driven certification procedures of this

kind are in general unsound, as we explain next. For completeness, Section C.4 of the

Appendix includes a self-contained proof of this result in our notation.

Theorem 4.3.1
If P(A1:T ”= a1:T ) > 0, then the distribution of X0:T (a1:T ) is not uniquely identified by

the distribution of the data in (4.1) without further assumptions.

Since the distribution of the data encodes the information that would be contained in

an infinitely large dataset of trajectories, Theorem 4.3.1 imposes a fundamental limit on

what can be learned about the distribution of X0:T (a1:T ) from the data we have assumed.

It follows that if H is any hypothesis satisfying (4.2), then H cannot be determined to

be true from even an infinitely large dataset. This is because, if we could do so, then we

could also determine the distribution of X0:T (a1:T ), since by Proposition 4.2.1 this would

be equal to the distribution of (X0, „XT (X0, a1:T )). In other words, we cannot use the data

alone to certify that the twin is interventionally correct.

4.3.3 The assumption of no unmeasured confounding

Theorem 4.3.1 is true in the general case, when no additional assumptions about the data-

generating process are made. One way forward is therefore to introduce assumptions under

which the distribution of X0:T (a1:T ) can be identified. This would mean it is possible to

certify that the twin is interventionally correct, since, at least in principle, we could simply

check whether this matches the distribution of (X0, „X1:T (X0, a1:T )) produced by the twin.

The most common such assumption in the causal inference literature is that the data

are free of unmeasured confounding. Informally, this holds when each action At is chosen

by the behavioural agent solely on the basis of the information available at time t that is

actually recorded in the dataset, namely X0, A1, X1(A1), . . . , At≠1, Xt≠1(A1:t≠1), as well as

possibly some additional randomness that is independent of the real-world process, such as
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the outcome of a coin toss. (This can be made precise via the sequential randomisation

assumption introduced by Robins [1986].) Unobserved confounding is present whenever

this does not hold, i.e. whenever some unmeasured factor simultaneously influences both

the agent’s choice of action and the observation produced by the real-world process.

It is reasonable to assume that the data are unconfounded in certain contexts. For

example, in certain situations it may be possible to gather data in a way that specifically

guarantees there is no confounding. Randomised controlled trials, which ensure that each

At is chosen via a carefully designed randomisation procedure [Lavori and Dawson, 2004,

Murphy, 2005], constitute a widespread example of this approach. Likewise, it is possible

to show that the data are unconfounded if each Xt(a1:t) is a deterministic function of

X0:t≠1(a1:t≠1) and at, which may be reasonable to assume for example in certain low-level

physics or engineering contexts. (See Section C.5 of the Appendix for a proof.) However,

for stochastic phenomena and for typical datasets, it is widely acknowledged that the

assumption of no unmeasured confounding will rarely hold, and so assessment procedures

based on this assumption may yield unreliable results in practice [Murphy, 2003, Tsiatis

et al., 2019]. Section C.6 of the Appendix illustrates this concretely with a toy scenario.

4.3.4 General-purpose assessment via falsification

Our goal is to obtain an assessment methodology that is general-purpose, and as such

we would like to avoid introducing assumptions such as unconfoundedness that do not

hold in general. To achieve this, borrowing philosophically from Popper [2005], we

propose a strategy that replaces the goal of verifying the interventional correctness of

the twin with that of falsifying it. Specifically, we consider hypotheses H with the

dual property to (4.2), namely:

If the twin is interventionally correct, then H is true. (4.3)

We will then try to show that each such H is false. Whenever we are successful, we will

thereby have gained some knowledge about a failure mode of the twin, since by construction

the twin can only be correct if H is true. In e�ect, each H we falsify will constitute a

reason that the twin is not correct, and may suggest concrete improvements to its design,

or may identify cases where its output should not be trusted.



4. Causal Falsification of Digital Twins 69

Importantly, unlike for (4.2), Theorem 4.3.1 does not preclude the possibility of data-

driven assessment procedures based on (4.3). As we show below, there do exist hypotheses

H satisfying (4.3) that can in principle be determined to be false from the data alone without

additional assumptions. In this sense, falsification provides a means for sound data-driven

twin assessment, whose results can be relied upon across a wide range of circumstances.

On the other hand, falsification approaches cannot provide a complete guarantee about

the accuracy of a twin: even if we fail to falsify many H satisfying (4.3), we cannot then

infer that the twin is correct. As such, in situations where (for example) it is reasonable to

believe that the data are in fact unconfounded, it may be desirable to use this assumption

to obtain additional information about the twin than is possible from falsification alone.

4.4 Longitudinal causal bounds

4.4.1 Statement of result

One possible means for obtaining interventional information about the twin is via the clas-

sical bounds proposed by Manski [1990]. These bounds hold without further assumptions,

and so could in principle give rise to a sound falsification procedure of the kind we are

seeking. However, although they have been successfully applied in various cases, Manski’s

bounds are often very conservative, and so would not lead to very informative results if

used directly. To address this, we propose a novel generalisation of these bounds that

explicitly accounts for the temporal structure of our setting. As we explain below, our

bounds can become considerably more informative than those of Manski, while also not

requiring the addition of untestable causal assumptions. We provide these bounds next,

along with several theoretical results about their behaviour and optimality. In Section 4.5,

we use these bounds to define a class of H with the desired property (4.3), which then

yields a procedure for falsifying twins through hypothesis testing techniques.



4. Causal Falsification of Digital Twins 70

Theorem 4.4.1
Suppose (Y (a1:t) : a1:t œ A1:t) are real-valued potential outcomes defined jointly with

(X0:T (a1:T ) : a1:T œ A1:T ) and A1:T . If for some t œ {1, . . . , T}, a1:t œ A1:t, measurable

B0:t ™ X0:t, and ylo, yup œ R we have

P(X0:t(a1:t) œ B0:t) > 0 (4.4)

P(ylo Æ Y (a1:t) Æ yup | X0:t(a1:t) œ B0:t) = 1, (4.5)

then it holds that

E[Ylo | X0:N(A1:N) œ B0:N ] Æ E[Y (a1:t) | X0:t(a1:t) œ B0:t] Æ E[Yup | X0:N(A1:N) œ B0:N ],

(4.6)

where we define N := max{0 Æ s Æ t | A1:s = a1:s}, and similarly

Ylo := (A1:t = a1:t) Y (A1:t) + (A1:t ”= a1:t) ylo

Yup := (A1:t = a1:t) Y (A1:t) + (A1:t ”= a1:t) yup.

(See Section C.7 of the Appendix for a proof.)

For brevity, in what follows we will write the terms in (4.6) as Qlo, Q, and Qup

respectively, so the conclusion of this result becomes Qlo Æ Q Æ Qup.

Intuitively, Y (a1:t) here may be thought of as some quantitative outcome of interest. For

example, in a medical context, Y (a1:t) might represent the heart rate of a patient at time

t after receiving some treatments a1:t. When defining our hypotheses below, we consider

the specific form Y (a1:t) := f(X0:t(a1:t)), where f : X0:t æ R is some scalar function. The

value Q is then simply the (conditional) average behaviour of this outcome. By Theorem

4.3.1, Q is in general not identified by the data since it depends on X0:t(a1:t). On the other

hand, both Qlo and Qup are identified, since the relevant random variables Ylo, Yup, N , and

X0:N(A1:N) can all be expressed as functions of the observed data X0:t(A1:t) and A1:t. In

this way, Theorem 4.4.1 bounds the behaviour of a non-identifiable quantity in terms of

identifiable ones. At a high level, this is achieved by replacing Y (a1:t), whose value is only

observed on the event {A1:t = a1:t}, with Ylo and Yup, which are equal to Y (a1:t) when its

value is observed (i.e. when A1:t = a1:t), and which fall back to the worst-case values of ylo
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and yup otherwise. We emphasise that Theorem 4.4.1 does not require any additional causal

assumptions, and in particular remains true under arbitrary unmeasured confounding.

In the structural causal modelling framework [Pearl, 2009], a related result to Theorem

4.4.1 was given as Corollary 1 by Zhang and Bareinboim [2019]. However, their result

involves a complicated ratio of unknown quantities that makes estimation of their bounds

di�cult, since it is not obvious how to obtain an unbiased estimator for their ratio

term. In contrast, our proposed causal bounds are considerably simpler, since both Qlo

and Qup here are expressed as (conditional) expectations. This makes their unbiased

estimation straightforward, which we use to obtain exact confidence intervals for both

terms in Section 4.5.2.

4.4.2 Informativeness

For Theorem 4.4.1 to be useful in practice, we would like the bounds [Qlo, Qup] to be

relatively narrower than the worst-case bounds [ylo, yup] that are trivially implied by (4.5).

We can quantify the extent to which this occurs by the ratio

Qup ≠ Qlo
yup ≠ ylo

= 1 ≠ P(A1:t = a1:t | X0:N(A1:N) œ B0:N), (4.7)

where the equality here follows from the definitions of Qlo and Qup together with some

straightforward manipulations. In other words, the (relative) tightness of our bounds

is determined by the value of P(A1:t = a1:t | X0:N(A1:N) œ B0:N), which is itself closely

related to the classical propensity score in the causal inference literature [Rosenbaum

and Rubin, 1983]. Intuitively, as this probability grows larger, so too does P(Y (a1:t) =

Y (A1:t) | X0:N(A1:N) œ B0:N), which means the e�ect of unmeasured confounding on the

value of Q is reduced, leading to tighter bounds.

Theorem 4.4.1 is a generalisation of the bounds proposed by Manski [1990], which can be

recovered as the case where B0:t = X0:t, so that (4.6) becomes E[Ylo] Æ E[Y (a1:t)] Æ E[Yup].

In practice, Manski’s result is often regarded as quite uninformative. From (4.7), this is

true whenever P(A1:t = a1:t) is small, which often occurs in many applications, particularly

for longer action sequences. On the other hand, in many contexts it seems reasonable to

anticipate that certain longer action sequences will be fairly likely to occur when conditioned

on some intermediate observations. In other words, P(A1:t = a1:t | X0:N(A1:N) œ B0:N)



4. Causal Falsification of Digital Twins 72

may be large, even if P(A1:t = a1:t) is not. By choosing B0:t carefully, we can therefore

obtain tighter bounds than would be possible by using Manski’s original result. The

following straightforward result provides a su�cient condition for this to hold. In Section

4.6 below, we also show empirically that Theorem 4.4.1 yields more informative results

in our case study compared with Manski’s original bounds.

Proposition 4.4.1
Consider the same setup as Theorem 4.4.1, where also ylo Æ Y (a1:t) Æ yup almost surely.

If P(A1:t = a1:t | X0:N (A1:N ) œ B0:N ) > P(A1:t = a1:t), then the width of Manski’s bounds

exceeds that of Theorem 4.4.1, i.e. E[Yup] ≠ E[Ylo] > Qup ≠ Qlo.

Beyond allowing us to obtain tighter bounds, the conditional nature of Theorem

4.4.1 also appears of interest simply for its own sake. In particular, Theorem 4.4.1

describes the interventional behaviour of Y (a1:t) conditional on the behaviour of the

trajectory X0:t(a1:t), thereby providing more granular information than can be obtained

from unconditional bounds of Manski [1990] alone.

4.4.3 Optimality

The following result shows that Theorem 4.4.1 cannot be improved without further

assumptions. Intuitively speaking, there always exists some family of potential outcomes

that produces the same observational data as our model, but that attains the worst-case

bounds Qlo or Qup. Therefore, we cannot rule out the possibility that the true potential

outcomes achieve Qlo or Qup from the observational data alone.

Proposition 4.4.2
Under the same setup as in Theorem 4.4.1, there always exists potential outcomes

(X̃0:T (aÕ

1:T ), Ỹ (aÕ

1:t) : aÕ

1:T œ A1:T ) also satisfying (4.5) (mutatis mutandis) with

(X̃0:T (A1:T ), Ỹ (A1:t), A1:T ) a.s.= (X0:T (A1:T ), Y (A1:t), A1:T )

but for which

E[Ỹ (a1:t) | X̃0:t(a1:t) œ B0:t] = Qlo.

The corresponding statement is also true for Qup.
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Apart from attempting to tighten our bounds on Q, in some cases we may wish

to consider bounding the alternative quantity E[Y (a1:t) | X0:t(a1:t)] that conditions on

the value of X0:t(a1:t) rather than on the event {X0:t(a1:t) œ B0:t}. To achieve this, it

is natural to generalize our assumption (4.5) by supposing we now have measurable

functions ylo, yup : X0:t æ R such that

ylo(X0:t(a1:t)) Æ Y (a1:t) Æ yup(X0:t(a1:t)) almost surely, (4.8)

and our goal is to obtain measurable functions glo, gup : X0:t æ R such that

glo(X0:t(a1:t)) Æ E[Y (a1:t) | X0:t(a1:t)] Æ gup(X0:t(a1:t)) almost surely. (4.9)

As we describe in Section C.7.4 of the Appendix, bounds of this kind can be obtained

directly from Theorem 4.4.1 if X0:t(a1:t) is discrete, or by a simple modification of the

proof of Theorem 4.4.1 if X1:t(a1:t) is discrete (but X0 is possibly continuous). However,

somewhat surprisingly, in general we cannot obtain nontrivial bounds of this kind without

further assumptions beyond the discrete case. To make this precise, we will say that a

given glo and gup are permissible if (4.9) holds when (X0:T (a1:t), Y (a1:t), A1:T : aÕ

1:T œ A1:T )

are replaced by any potential outcomes (X̃0:T (aÕ

1:T ), Ỹ (aÕ

1:t), Ã1:T : aÕ

1:T œ A1:T ) for which

Law[X̃0:T (Ã1:T ), Ã1:T , Ỹ (Ã1:t)] = Law[X0:T (A1:T ), A1:T , Y (A1:t)], and which also satisfy

(4.8) (mutatis mutandis). Intuitively, this means that glo and gup depend only on the

information we have available, i.e. the observational distribution and our assumed worst-

case values. We then have the following:

Theorem 4.4.2
Suppose X0 is almost surely constant, P(A1 ”= a1) > 0, and for some s œ {1, . . . , t}

we have P(Xs(A1:s) = xs) = 0 for all xs œ Xs. Then glo, gup : X0:t æ R are permissible

bounds only if they are trivial, i.e.

glo(X0:t(a1:t)) Æ ylo(X0:t(a1:t)) and gup(X0:t(a1:t)) Ø yup(X0:t(a1:t)) almost surely.

Here the assumption that X0 is constant essentially means we consider a special case of

our model where there are no covariates available before the first action is taken, and serves

mainly to simplify the proof. We conjecture that Theorem 4.4.2 holds more generally,

provided the other assumptions are accordingly made to be conditional on X0 also. In
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any case, this result shows that general purpose bounds on E[Y (a1:t) | X0:t(a1:t)] are not

forthcoming, and Theorem 4.4.1 is the best we can hope for in general. We show below

that this result is nevertheless powerful enough to obtain useful information in practice.

4.5 Falsification methodology

4.5.1 Hypotheses derived from causal bounds

We now use Theorem 4.4.1 to obtain a hypothesis testing procedure that can be used to

falsify the twin, and that does not rely on any further assumptions than we have already

provided. To this end, we first define the hypotheses H satisfying (4.3) that we will consider.

Each of these will depend on a specific choice of the following parameters:

• A timestep t œ {1, . . . , T}

• A measurable function f : X0:t æ R

• A sequence of actions a1:t œ A1:t

• A sequence of subsets B0:t ™ X0:t.

To streamline notation, in this section, we will consider these parameters to be fixed.

However, we emphasize that our construction can be instantiated for many di�erent choices

of these parameters, and indeed we will do so in our case study below. We think of f as

expressing a specific outcome of interest at time t in terms of the data we have assumed.

Accordingly, for each aÕ

1:t œ A1:t, we define new potential outcomes Y (aÕ

1:t) := f(X0:t(aÕ

1:t)).

For example, in a medical context, if X0:t(aÕ

1:t) represents a full patient history at time

t after treatments aÕ

1:t, then Y (aÕ

1:t) might represent the patient’s heart rate after these

treatments. Likewise, B0:t selects a subgroup of patients of interest, e.g. elderly patients

whose blood pressure values were above some threshold at some timesteps before t.

The hypotheses we consider are based on the corresponding outcome produced by the

twin when initialised at X0, which we define for aÕ

1:t œ A1:t as ‚Y (aÕ

1:t) := f(X0, „X1:t(X0, aÕ

1:t)).

Supposing it holds that

P(„X1:t(X0, a1:t) œ B1:t) > 0, (4.10)

we may then define ‚Q := E[ ‚Y (a1:t) | X0 œ B0, „X1:t(X0, a1:t) œ B1:t], i.e. the analogue of Q for

the twin. By Proposition 4.2.1, if the twin is interventionally correct, then ‚Q = Q. Theorem
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4.4.1 therefore implies that the following hypotheses have our desired property (4.3):

Hlo: If (4.4), (4.5), and (4.10) hold, then ‚Q Ø Qlo

Hup: If (4.4), (4.5), and (4.10) hold, then ‚Q Æ Qup.

Moreover, Hlo and Hup can in principle be determined to be true or false from the

information we have assumed available, since Qlo and Qup depend only on the observational

data, and ‚Q can be estimated by generating trajectories from the twin.

When either Hlo or Hup is falsified, it immediately follows that the twin is not

interventionally correct. However, even more than this, a falsification describes a concrete

failure mode with various potential implications downstream, which is considerably more

useful information about the twin in practice. For example, if Hlo is false (i.e. if ‚Q < Qlo),

it follows that, among those trajectories for which (X0, „X1:t(X0, a1:t)) œ B0:t, the mean of
‚Y (a1:t) is too small. (Higher moments could also be considered by choosing f appropriately.)

In light of this, a user might choose not to rely on outputs of the twin produced under these

circumstances, while a developer seeking to improve the twin could focus their attention

on the specific parts of its implementation that give rise to this behaviour. We illustrate

this concretely through our case study in Section 4.6.

4.5.2 Exact testing procedure

We now describe a procedure for testing Hlo and Hup using a finite dataset that obtains

exact control over type I error without relying on additional assumptions or asymptotic

approximations. We show in our case study below that this procedure is nevertheless

powerful enough to obtain useful information about a twin in practice.

We focus here on obtaining a p-value for Hlo given a fixed choice of parameters

(t, f, a1:t, B0:t). Our procedure for Hup is symmetrical, or may be regarded as a special

case of testing Hlo by replacing f with ≠f . Multiple hypotheses may then be handled via

standard techniques such as the method of Holm [1979] (which we use in our case study)

or of Benjamini and Yekutieli [2001], both of which apply without additional assumptions.

As above, we assume access to a finite dataset D of i.i.d. copies of (4.1). We also

assume access to a dataset ‚D(a1:t) of i.i.d. copies of

X0, „X1(X0, a1), . . . , „Xt(X0, a1:t). (4.11)
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In practice, these copies can be obtained by initialising the twin with some value X0 taken

from D without replacement and supplying inputs a1:t. If each X0 in D is used to initialize

the twin at most once, then the resulting trajectories in ‚D(a1:t) are guaranteed to be i.i.d.,

since we assumed in Section 4.2 that the potential outcomes „Xt(x0, a1:t) produced by the

twin are independent across runs. We adopt this approach in our case study.

Observe that Hlo is false only if (4.4), (4.5), and (4.10) all hold. We account for this

in our testing procedure as follows. First, (4.5) immediately follows if

ylo Æ f(x0:t) Æ yup for all x0:t œ B0:t. (4.12)

This holds automatically in certain cases, such as for binary outcomes (e.g. patient survival),

or otherwise can be enforced simply by clipping the value of f to live within [ylo, yup]. We

describe a practical means for choosing f in this way in Section 4.6.

To account for (4.4) and (4.10), we simply check whether there exists some trajec-

tory in D with A1:t = a1:t and X0:t(A1:t) œ B0:t, and some trajectory in ‚D(a1:t) with

(X0, „X1:t(X0, a1:t)) œ B0:t. If there are not, then we refuse to reject Hlo at any significance

level; otherwise, we proceed to test ‚Q Ø Qlo as described next. It easily follows that

there is zero probability we will reject Hlo if (4.4) and (4.10) do not in fact hold, and

so our overall type I error is controlled at the desired level.

To test ‚Q Ø Qlo, we begin by constructing a one-sided lower confidence interval for

Qlo, and a one-sided upper confidence interval for ‚Q. In detail, for each significance level

– œ (0, 1), we obtain R–
lo and ‚R– as functions of D and ‚D(a1:t) such that

P(Qlo Ø R–
lo) Ø 1 ≠

–

2 P( ‚Q Æ ‚R–) Ø 1 ≠
–

2 . (4.13)

We will also ensure that these are nested, i.e. R–
lo Æ R–Õ

lo and ‚R–Õ
Æ ‚R– if – Æ –Õ. We

describe two methods for obtaining R–
lo and ‚R– satisfying these conditions below.

From these confidence intervals, we obtain a test for the hypothesis ‚Q Ø Qlo that

rejects when ‚R– < R–
lo. A straightforward argument given in Section C.8.1 of the Appendix

shows that this controls the type I error at the desired level –. Nestedness also yields a

p-value obtained as the smallest value of – for which this test rejects, i.e. plo := inf{– œ

(0, 1) | ‚R– < R–
lo}, or 1 if the test does not reject at any level.

We now consider how to obtain confidence intervals for Qlo and ‚Q satisfying the desired

conditions above. To this end, observe that both quantities are (conditional) expectations
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involving random variables that can be computed from D or ‚D(a1:t). This allows both

to be estimated unbiasedly, which in turn can be used to derive confidence intervals via

standard techniques. For example, consider the subset of trajectories in ‚D(a1:t) with

(X0, „Xt(X0, a1:t)) œ B0:t. For each such trajectory, we obtain a corresponding value of
‚Y (a1:t) that is i.i.d. and has expectation ‚Q. Similarly, for Qlo, we extract the subset of

trajectories in D for which X0:N(A1:N) œ B0:N holds. The values of Ylo obtained from

each such trajectory are then i.i.d. and have expectation Qlo.

At this point, our problem now reduces to that of constructing a confidence interval for

the expectation of a random variable using i.i.d. copies of it. Various techniques exist for

this, and we consider two possibilities in our case study. The first leverages the fact that
‚Y (a1:t) and Ylo are bounded in [ylo, yup], which gives rise to R–

lo and ‚R– via an application of

Hoe�ding’s inequality. This approach has the appealing property that (4.13) holds exactly,

although often at the expense of conservativeness. In practice, this could be mitigated

by instead obtaining confidence intervals via (for example) the bootstrap [Efron, 1979],

although at the expense of requiring (often mild) asymptotic assumptions. Section C.8.2

of the Appendix describes both methods in greater detail. Our empirical results reported

in the next section all use Hoe�ding’s inequality are hence exact, but we also provide

additional results using bootstrapping in Section C.9.7 of the Appendix.

4.6 Case Study: Pulse Physiology Engine

4.6.1 Experimental setup

We applied our assessment methodology to the Pulse Physiology Engine [Bray et al., 2019],

an open-source model for human physiology simulation. Pulse simulates trajectories of

various physiological metrics for patients with conditions like sepsis, COPD, and ARDS.

We describe the main steps of our experimental procedure and results below, with full

details given in the Section C.9 of the Appendix.

We utilized the MIMIC-III dataset [Johnson et al., 2016], a comprehensive collection of

longitudinal health data from critical care patients at the Beth Israel Deaconess Medical

Center (2001-2012). We focused on patients meeting the sepsis-3 criteria [Singer et al., 2016],

following the methodology of Komorowski et al. [2018] for selecting these. This yielded

11,677 sepsis patient trajectories. We randomly selected 5% of these (583 trajectories,
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denoted as D0) to use for choosing the parameters of our hypotheses via a sample

splitting approach [Cox, 1975], with the remaining 95% (11,094 trajectories, denoted

as D) reserved for the actual testing.

We considered hourly observations of each patient over the the first four hours of

their ICU stay, i.e. T = 4. We defined the observation spaces X0:T using a total of 17

features included in our extracted MIMIC trajectories for this time period, including

static demographic quantities and patient vitals. Following Komorowski et al. [2018], the

actions we considered involved the administration of intravenous fluids and vasopressors,

which both play a primary role in the treatment of sepsis in clinical practice. Since

these are recorded in MIMIC as continuous doses, we discretised their values via the

same procedure as Komorowski et al. [2018], obtaining finite action spaces A1 = · · · =

A4, each with 25 distinct actions.

We defined a collection of hypothesis parameters (t, f, a1:t, B0:t), each of which we

then used to define an Hlo and Hup to test. For this, we chose 14 di�erent physiological

quantities of interest to assess, including heart rate, skin temperature, and respiration

rate (see Table C.3 in the Appendix for a complete list). For each of these, we selected

combinations of t, a1:t, and B0:t observed for at least one patient trajectory in D0. We

took ylo and yup to be the .2 and .8 quantiles of the same physiological quantity as was

recorded in D0, and defined f as the function that extracts this quantity from Xt and

clips its value between ylo and yup, so that (4.12) holds. We describe this procedure in full

in Section C.9.5 of the Appendix. We also investigated the sensitivity of our procedure

to the choice of ylo and yup and found it to be relatively stable: see Section C.9.9 of

the Appendix. We obtained 721 unique parameter choices, each of which produced two

hypotheses Hlo and Hup, leading to 1,442 hypotheses in total.

We generated data from Pulse to test the chosen hypotheses. For each a1:t occurring

in any of our hypotheses, we obtained the dataset ‚D(a1:t) as described in Section 4.5.2.

Specifically, we sampled X0 without replacement from D, and used this to initialize a twin

trajectory. Then, at each hour tÕ
œ {1, . . . , 4} in the simulation, we administered a dose of

intravenous fluids and vasopressors corresponding to atÕ and recorded the resulting patient

features generated by Pulse. We describe this procedure in full in Section C.9.6 in the

Appendix. This produced a total of 26,115 simulated trajectories.
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Ours Manski
Physiological quantity Rejs. Hyps. Rejs. Hyps.

Chloride Blood Concentration (Chloride) 24 94 1 46
Sodium Blood Concentration (Sodium) 21 94 9 46
Potassium Blood Concentration (Potassium) 13 94 0 46
Skin Temperature (Temp) 10 86 9 46
Calcium Blood Concentration (Calcium) 5 88 0 46
Glucose Blood Concentration (Glucose) 5 96 1 46
Arterial CO2 Pressure (paCO2) 3 70 0 46
Bicarbonate Blood Concentration (HCO3) 2 90 1 46
Systolic Arterial Pressure (SysBP) 2 154 0 46

Table 4.1: Total hypotheses (Hyps.) and rejections (Rejs.) per physiological quantity using our
causal bounds, as well as those of Manski [1990]

4.6.2 Hypothesis rejections

We tested the hypotheses just described using our methodology from Section 4.5.2. Here

we report the results when using Hoe�ding’s inequality to obtain confidence intervals

for Qlo, Qup, and ‚Q. We also tried confidence intervals obtained via bootstrapping, and

obtained similar if less conservative results (see Section C.9 of the Appendix). We used the

Holm-Bonferroni method to adjust for multiple tests, with family-wise error rate of 0.05.

We obtained rejections for hypotheses corresponding to 10 di�erent physiological

quantities shown in Table 4.1. (Table C.3 in the Appendix shows all hypotheses we tested,

including those not rejected.) We may therefore infer that, at a high level, Pulse does

not simulate these quantities accurately for the population of sepsis patients we consider.

This appears of interest in a variety of downstream settings: for example, a developer

could use this information when considering how to improve the accuracy of Pulse, while a

practitioner using Pulse may wish to rely less on these outputs as a result.

To assess the relative performance of our bounds from Theorem 4.4.1 compared with

the unconditional bounds of Manski [1990], we also reran this analysis with each t, f ,

and a1:t chosen as before, but with each B0:t now set to the whole space X0:t. This in

turn led to fewer hypotheses, namely 690 in total, which were evenly divided between

hypotheses of the form E[ ‚Y (a1:t)] Ø E[Ylo] and those of the form E[ ‚Y (a1:t)] Æ E[Yup]. We

kept all other aspects of our procedure the same as just described, including our method

for obtaining confidence intervals and controlling for multiple testing. The number of

rejections that we obtained in this case is also shown in Table 4.1. As anticipated by our

discussion in Section 4.4.2, the conservativeness of Manski’s bounds led to considerably
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Figure 4.1: Distributions of ≠ log10 plo and ≠ log10 pup across hypotheses, grouped by physiolog-
ical quantity. Higher values indicate greater evidence in favour of rejection.

fewer rejections than our more general result given in Theorem 4.4.1, even when considered

as a proportion of the total hypotheses we tested.

4.6.3 p-value plots

To obtain more granular information about the failure modes of the twin just identified,

we examined the p-values obtained for each hypothesis Hlo and Hup tested using our

causal bounds, which we denote here by plo and pup. Figure 4.1 shows the distributions of

≠ log10 plo and ≠ log10 pup that we obtained for all physiological quantities for which some

hypothesis was rejected. (The remaining p-values are shown in Figure C.3 in the Appendix.)

Notably, in each row, one distribution is always tightly concentrated at ≠ log10 p = 0 (i.e.

p = 1). This means that, for all physiological outcomes of interest, there was either very

little evidence in favour of rejecting any Hlo, or very little in favour of rejecting any Hup. In

other words, across configurations of (t, f, a1:t, B0:t) that were rejected, the twin consistently

either underestimated or overestimated each quantity on average. For example, Pulse

consistently underestimated chloride blood concentration and skin temperature, while it

consistently overestimated sodium and glucose blood concentration levels. Like Table 4.1,

this information appears of interest and actionable in a variety of downstream tasks.

4.6.4 Pitfalls of naive assessment

A naive approach to twin assessment involves simply comparing the output of the twin

with the observational data directly, without accounting for causal considerations. We now

show that, unlike our methodology, the results produced in this way can be potentially
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Figure 4.2: Estimates and 95% confidence intervals for ‚Qt and Qobs
t at each 1 Æ t Æ 4 for two

choices of (B0:4, a1:4), where ‚Y (a1:t) and Y (a1:t) correspond to HCO3 concentration. The dashed
lines indicate lower and upper 95% confidence intervals for Qlo, Qup respectively.

misleading. In Figure 4.2, for two di�erent choices of (a1:4, B1:4), we plot estimates of
‚Qt and Qobs

t for t œ {1, . . . , 4}, where

‚Qt := E[ ‚Y (a1:t) | X0 œ B0, „X1:t(X0, a1:t) œ B1:t]

Qobs
t := E[Y (A1:t) | X0:t(A1:t) œ B0:t, A1:t = a1:t].

Here ‚Qt is just ‚Q as defined above with its dependence on t made explicit. Each plot also

shows one-sided 95% confidence intervals on Qlo and Qup at each t œ {1, . . . , 4} obtained

from Hoe�ding’s inequality. Directly comparing the estimates of ‚Qt and Qobs
t would suggest

that the twin is comparatively more accurate for the right-hand plot, as these estimates

are closer to one another in that case. However, the output of the twin in the right-hand

plot is falsified at t = 1, as can be seen from the fact that confidence interval for ‚Q1 lies

entirely above the one-sided confidence interval for Qup at that timestep. On the other

hand, the output of the twin in the left-hand plot is not falsified at any of the timesteps

shown, so that the twin may in fact be accurate for these (a1:4, B1:4), contrary to what a

naive assessment strategy would suggest. Our methodology provides a principled means

for twin assessment that avoids drawing potentially misleading inferences like this.

A similar phenomenon appears in Figure 4.3, which for two choices of B0:t and a1:t

shows histograms of raw glucose values obtained from the observational data conditional

on A1:t = a1:t and X0:t(A1:t) œ B0:t, and from the twin conditional on „X0:t(a1:t) œ B0:t.

Below each histogram we also show 95% confidence intervals for Qup and ‚Q obtained

from Hoe�ding’s inequality. While Figures 4.3a and 4.3b appear visually very similar, the

inferences produced by our testing procedure are di�erent: the hypothesis corresponding

to the right-hand plot is rejected, since there is no overlap between the confidence intervals
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(a) Not rejected (b) Rejected

Figure 4.3: Raw glucose values from the observational data and twin for two choices of (B0:t, a1:t),
with confidence intervals for ‚Q and Qup shown below. The horizontal axes are truncated to the
.025 and .975 quantiles of the observational data for clarity. Untruncated plots are shown in
Figure C.4 of the Appendix.

underneath, while the hypothesis corresponding to the left-hand plot is not. This was not

an isolated case and several other examples of this phenomenon are shown in Figure C.4 in

the Appendix. This demonstrates that the inferences obtained from our procedure do not

depend only on the distribution of observed outcomes (which is essentially the same for

both cases). Instead, as discussed in Section 4.4.1, these also account for the worst-case

e�ects of unmeasured confounding that may exist in the observational data.

4.7 Discussion

We have advocated for a causal approach to digital twin assessment, and have presented

a statistical procedure for doing so that obtains rigorous theoretical guarantees under

minimal assumptions. We now highlight the key limitations of our approach. Importantly,

our methodology implicitly assumes that there is no distribution shift between testing

and deployment time. If the conditional distribution of X1:T (a1:T ) given X0 changes at

deployment time, then so too does the set of twins that are interventionally correct, and if

this change is significant enough, our assessment procedure may yield misleading results.

Distribution shift in this sense is a separate issue to unobserved confounding, and arises

in a wide variety of statistical problems beyond ours.

Additionally, the procedure we used in our case study to choose the hypothesis

parameters B0:t was ad hoc. For scalability, it would likely be necessary to obtain B0:t

via a more automated procedure. It may also be desirable to choose B0:t dynamically in
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light of previous hypotheses tested, zooming in to regions containing possible failure modes

to obtain increasingly granular information about the twin. We see opportunities here

for using machine learning techniques, but leave this to future work.

Various other extensions and improvements appear possible. For example, one can

leverage ideas from the literature on partial identification [Manski, 2003] to obtain greater

statistical e�ciency, for example by building on the line of work initiated by Imbens and

Manski [2004] for obtaining more informative confidence intervals. Beyond this, it may

sometimes be useful to consider additional assumptions that lead to less conservative

assessment results. For example, various methods for sensitivity analysis have been

proposed that model the degree to which the actions of the behavioural agent are confounded

[Rosenbaum, 2002, Tan, 2006, Yadlowsky et al., 2022]. This can yield tighter bounds

on Q than are implied by Theorem 4.4.1, albeit at the expense of less robustness if

these assumptions are violated.
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5.1 Discussion

Before deploying a decision-making policy to production, it is usually important to

understand the plausible range of outcomes that it may produce. However, due to resource

or ethical constraints, it is often not possible to obtain this understanding by testing the

policy directly in the real-world. In such cases we have to rely on o�-policy evaluation

(OPE), which uses observational data collected under a di�erent behavioural policy to

evaluate the target policy in some way. In this thesis, we have considered some of the

challenges posed by the current OPE methodologies and proposed novel solutions to each

of these individually. We have also demonstrated the practical utility of these solutions

by applying them to a range of real-world problems involving large scale datasets. To be

more specific, below we provide a brief summary of the challenges tackled in this thesis:

• In Chapter 2 we consider the problem of variance reduction in OPE estimators.

To address this, we propose the Marginal Ratio (MR) estimator, which uses a

marginalization technique to provide a more e�cient and robust estimator for

contextual bandits, and may also be of interest in other domains such as causal

inference.
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• Next, in Chapter 3 we provide a novel methodology of uncertainty quantification

in o�-policy outcomes based on conformal prediction [Vovk et al., 2005]. Our

proposed technique can help practitioners quantify the plausible range of outcomes

that are likely to occur under the target policy, and comes with sound finite-sample

probabilistic guarantees.

• Finally, in Chapter 4 we explore the case when the assumption of no unmeasured

confounding (needed for the existing OPE methodologies) is violated. We provide

a set of novel causal bounds which remain valid in this case, and subsequently use

these bounds to develop a procedure for robust assessment of digital twin models

using observational data which remains valid under only the assumption of an i.i.d.

dataset of observational trajectories.

5.2 Limitations

Here, we outline some of the limitations of the methodologies described in this thesis.

Distributional shift in data generating mechanism Our methodologies highlighted

in this thesis implicitly assume that the data generating process remains unchanged between

testing and deployment times. Technically, for contextual bandits this assumption means

that the conditional distribution of Y given (X, A) does not shift when the target policy is

deployed. If this distribution changes at deployment time, then so too does the distribution

of outcomes that would be observed under the target policy. If this shift is significant

enough, our methodologies may yield misleading results.

Estimation errors The techniques mentioned in Chapters 2 and 3 involve an additional

estimation of marginal density ratios for importance sampling. While we outline straight-

forward regression methodologies for estimating these importance ratios directly, this step

may still introduce an additional source of bias in the value estimation.
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Scalability limitations Increasing data dimensionality may pose additional challenges

for our solutions, especially those described in Chapters 3 and 4. For example, in Chapter

3, the estimation of importance ratios for our conformal o�-policy prediction (COPP)

algorithm may become more challenging when (X, A) is high-dimensional, thereby yielding

biased results. Likewise in Chapter 4, the procedure we used in our case study to

choose the hypothesis parameters was ad hoc, which may not scale to high-dimensional

datasets. For scalability, it would likely be necessary to obtain these parameters via

a more automated procedure.

5.3 Directions for future work

Our work in this thesis opens up several interesting avenues for future research. We

highlight some of these below.

O�-policy learning This thesis has largely focused on robust o�-policy assessment

methodologies. However, our findings are highly applicable to robust policy optimisation

problems, where the data collected using an ‘old’ policy is used to learn a new policy.

Proximal Policy Optimisation [Schulman et al., 2017] is one such approach which has gained

immense popularity and has been applied to reinforcement learning with human feedback

[Lambert et al., 2022]. We believe that our MR estimator proposed in Chapter 2 applied to

these methodologies could lead to improvements in the stability and convergence of these

optimisation schemes, given its favourable variance properties. Similarly, our conformal

o�-policy prediction (COPP) algorithm when applied to o�-policy learning could be a step

towards robust policy learning by optimising the worst-case outcome [Stutz et al., 2022].

Addressing the curse of horizon in sequential decision-making Chapters 2 and 3

of this thesis specifically consider OPE in contextual bandits. This setting o�ers a strong

foundational framework for conducting rigorous theoretical and empirical analyses, however,

it would be interesting to extend the application of these methodologies to sequential

decision frameworks. While some follow-up works have attempted to apply our COPP

algorithm to Markov Decision Processes [Fo�ano et al., 2023, Zhang et al., 2023, Kuipers

et al., 2024], the obtained confidence sets become increasingly conservative with increasing
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time horizon. It is worth exploring methodologies for obtaining intervals which remain

valid and informative even in sequential decision settings with large time horizons.

Application to transfer learning Finally, our solutions in Chapters 2 and 3 involves

learning importance ratios which may also be of interest in other domains beyond OPE.

One such area is transfer learning which considers cases where the testing data distribution

is di�erent from the training data distribution. Classical transfer learning methods

rely on importance weighting to handle the distribution mismatch [Shimodaira, 2000,

Sugiyama et al., 2007, Huang et al., 2007, Sugiyama et al., 2008, Lu et al., 2021]. Our

proposed regression techniques may be of interest for obtaining these weights e�ciently

in high-dimensional datasets in this setting.
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A.1 Proofs

Proof of Lemma 2.3.1. First, we express the weights w(y) as the conditional expectation

as follows:

w(y) = pfiú(y)
pfib(y)

=
⁄

X ,A

pfiú(x, a, y)
pfib(y) da dx

=
⁄

X ,A

pfiú(x, a, y)
pfib(y)

pfib(x, a | y)
pfib(x, a | y) da dx

=
⁄

X ,A

pfiú(x, a, y)
pfib(x, a, y) pfib(x, a | y) da dx

=
⁄

X ,A
fl(a, x) pfib(x, a | y) da dx

= Efib [fl(A, X) | Y = y],

where fl(a, x) = pfiú (x,a,y)
pfib (x,a,y) = fiú(a|x)

fib(a|x) . Since conditional expectations can be defined as the

solution of regression problem, the result follows.

Proof of Proposition 2.3.1. We have

Df (pfiú(x, a, y) || pfib(x, a, y)) = Efib

C

f

A
pfiú(X, A, Y )
pfib(X, A, Y )

BD

= Efib

C

f

A
fiú(A | X)
fib(A | X)

BD

= Efib

S

UEfib

S

Uf

A
fiú(A | X)
fib(A | X)

B ------
Y

T

V

T

V

Ø Efib

S

Uf

Q

aEfib

S

Ufiú(A | X)
fib(A | X)

------
Y

T

V

R

b

T

V (Jensen’s inequality)

= Efib

C

f

A
pfiú(Y )
pfib(Y )

BD

= Df (pfiú(y) || pfib(y)) .
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Proof of Proposition 2.3.2. Since Efib [◊̂IPW] = Efib [◊̂MR] = Efiú [Y ], we have that,

Varfib [◊̂IPW] ≠ Varfib [◊̂MR] = Efib [◊̂IPW]2 ≠ Efib [◊̂MR]2

= 1
n

1
Efib

Ë
fl(A, X)2 Y 2

È
≠ Efib

Ë
w(Y )2 Y 2

È2

= 1
n

1
Efib

Ë
Efib [fl(A, X)2

| Y ] Y 2
È

≠ Efib

Ë
w(Y )2 Y 2

È2

= 1
n

1
Efib

Ë
Efib [fl(A, X)2

| Y ] Y 2
È

≠ Efib

Ë
Efib [fl(A, X) | Y ]2 Y 2

È2

= 1
n
Efib

Ë
Varfib [fl(A, X) | Y ] Y 2

È
.

In the second last step above, we use the fact that w(y) = Efib [fl(A, X) | Y = y].

Proof of Proposition 2.3.3. Let µ̂(a, x) ¥ E[Y | X = x, A = a] denote the outcome model

in DR estimator. Then, using multiple applications of the law of total variance we get that

n Varfib [◊̂DR] = Varfib

S

Ufl(A, X) (Y ≠ µ̂(A, X)) +
ÿ

aÕœA

µ̂(aÕ, X) fiú(aÕ
| X)

T

V

= Varfib [fl(A, X) (Y ≠ µ̂(A, X)) + Efiú [µ̂(A, X) | X]]

= Efib [Varfib [fl(A, X) (Y ≠ µ̂(A, X)) + Efiú [µ̂(A, X) | X] | X, A]]

+ Varfib [Efib [fl(A, X) (Y ≠ µ̂(A, X)) + Efiú [µ̂(A, X) | X] | X, A]]

= Efib [fl(A, X)2Var[Y | X, A]]

+ Varfib [Efib [fl(A, X) (Y ≠ µ̂(A, X)) + Efib [fl(A, X) µ̂(A, X) | X] | X, A]]

= Efib [fl(A, X)2Var[Y | X, A]]

+ Varfib [fl(A, X) (µ(A, X) ≠ µ̂(A, X)) + Efib [fl(A, X) µ̂(A, X) | X]]

= Efib [fl(A, X)2Var[Y | X, A]]

+ Varfib [Efib [fl(A, X) (µ(A, X) ≠ µ̂(A, X)) + Efib [fl(A, X) µ̂(A, X) | X] | X]]

+ Efib [Varfib [fl(A, X) (µ(A, X) ≠ µ̂(A, X)) + Efib [fl(A, X) µ̂(A, X) | X] | X]]

= Efib [fl(A, X)2Var[Y | X, A]] + Varfib [Efib [fl(A, X) µ(A, X) | X]]

+ Efib [Varfib [fl(A, X) (µ(A, X) ≠ µ̂(A, X)) | X]]

Ø Efib [fl(A, X)2Var[Y | X, A]] + Varfib [Efib [fl(A, X) µ(A, X) | X]].

Using this, we get that

n(Varfib [◊̂DR] ≠ Varfib [◊̂MR])

Ø Efib [fl(A, X)2Var[Y | X, A]] + Varfib [Efib [fl(A, X) µ(A, X) | X]] ≠ Varfib [w(Y ) Y ].
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Again, using the law of total variance,

Varfib [fl(A, X) Y ] = Efib [Varfib [fl(A, X) Y | X, A]] + Varfib [Efib [fl(A, X) Y | X, A]]

= Efib [fl(A, X)2Var[Y | X, A]] + Varfib [fl(A, X) µ(A, X)]

= Efib [fl(A, X)2Var[Y | X, A]] + Varfib [Efib [fl(A, X) µ(A, X) | X]]

+ Efib [Varfib [fl(A, X) µ(A, X) | X]] .

Rearranging and substituting back into the expression earlier, we get that

n(Varfib [◊̂DR] ≠ Varfib [◊̂MR])

Ø Varfib [fl(A, X) Y ] ≠ Efib [Varfib [fl(A, X) µ(A, X) | X]] ≠ Varfib [w(Y ) Y ].

Now, from Proposition 2.3.2 we know that

n(Varfib [◊̂IPW] ≠ Varfib [◊̂MR]) = Varfib [fl(A, X) Y ] ≠ Varfib [w(Y ) Y ] = Efib

Ë
Varfib [fl(A, X) | Y ] Y 2

È
.

Therefore,

n(Varfib [◊̂DR] ≠ Varfib [◊̂MR])

Ø Efib

Ë
Varfib [fl(A, X) | Y ] Y 2

È
≠ Efib [Varfib [fl(A, X) µ(A, X) | X]]

= Efib [Varfib [fl(A, X) Y | Y ] ≠ Varfib [fl(A, X) µ(A, X) | X]] .

Proof of Theorem 2.3.2. This result follows straightforwardly from Proposition A.4.2 in

Appendix A.4.

Proof of Proposition 2.3.4.

Bias(◊̂IPW) = Efib [fl̂(A, X) Y ] ≠ Efiú [Y ]

= Efib [Efib [fl̂(A, X) | Y ] Y ] ≠ Efiú [Y ]

= Efib [ŵ(Y ) Y ] ≠ Efib [‘ Y ] ≠ Efiú [Y ]

= Bias(◊̂MR) ≠ Efib [‘ Y ].
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Next, to prove the variance result, we first use the law of total variance to obtain

Varfib [◊̂IPW] = 1
n

Varfib [fl̂(A, X) Y ]

= 1
n

(Varfib [Efib [fl̂(A, X) Y | Y ]] + Efib [Varfib [fl̂(A, X) Y | Y ]])

= 1
n

(Varfib [w̃(Y ) Y ] + Efib [Varfib [fl̂(A, X) Y | Y ]]) .

Moreover, using the fact that ŵ(Y ) = w̃(Y ) + ‘ we get that,

Varfib [◊̂MR] = 1
n

Varfib [ŵ(Y ) Y ]

= 1
n

Varfib [(w̃(Y ) + ‘) Y ]

= 1
n

(Varfib [w̃(Y ) Y ] + Varfib [‘ Y ] + 2 Cov(w̃(Y ) Y, ‘ Y )) .

Putting together the two variance expressions derived above, we get that

Varfib [◊̂IPW] ≠ Varfib [◊̂MR]

= 1
n

1
Efib [Varfib [fl̂(A, X) | Y ] Y 2] ≠ Varfib [‘ Y ] ≠ 2 Cov(w̃(Y ) Y, ‘ Y )

2
.

A.2 Comparison with extensions of the doubly robust
estimator

In this section, we theoretically investigate the variance of MR against the commonly

used extensions of the DR estimator, namely Switch-DR [Wang et al., 2017b] and DR

with Optimistic Shrinkage (DRos) [Su et al., 2020]. At a high level, these estimators seek

to reduce the variance of the vanilla DR estimator by considering modified importance

weights, thereby trading o� the variance for additional bias. Below, we provide the explicit

definitions of these estimators for completeness.

Switch-DR estimator The original DR estimator can still have a high variance when

the importance weights are large due to a large policy shift. Switch-DR [Wang et al., 2017b]

aims to circumvent this problem by switching to DM when the importance weights are large:

◊̂SwitchDR := 1
n

nÿ

i=1
fl(ai, xi) (yi ≠ µ̂(ai, xi)) (fl(ai, xi) Æ ·) + ÷̂(fiú),
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where · Ø 0 is a hyperparameter, µ̂(a, x) ¥ E[Y | X = x, A = a] is the outcome model, and

÷̂(fiú) = 1
n

nÿ

i=1

ÿ

aÕœA

µ̂(aÕ, xi)fiú(aÕ
| xi) ¥ Efiú [µ̂(A, X)]

where aú

i ≥ fiú(· | xi).

Doubly Robust with Optimal Shrinkage (DRos) DRos proposed by [Su et al.,

2020] uses new weights fl̂⁄(ai, xi) which directly minimises sharp bounds on the MSE

of the resulting estimator,

◊̂DRos := 1
n

nÿ

i=1
fl̂⁄(ai, xi) (yi ≠ µ̂(ai, xi)) + ÷̂(fiú),

where ⁄ Ø 0 is a pre-defined hyperparameter and fl̂⁄ is defined as

fl̂⁄(a, x) := ⁄

fl2(a, x) + ⁄
fl(a, x).

When ⁄ = 0, fl̂⁄(a, x) = 0 leads to DM, whereas as ⁄ æ Œ, fl̂⁄(a, x) æ fl(a, x) leading to

DR.

More generally, both of these estimators can be written as follows:

◊̂fl̃
DR := 1

n

nÿ

i=1
fl̃(ai, xi) (yi ≠ µ̂(ai, xi)) + ÷̂(fiú).

Here, when fl̃(a, x) = fl(a, x) (fl(ai, xi) Æ ·), we recover the Switch-DR estimator and

likewise when fl̃(a, x) = fl̂⁄(a, x), we recover DRos.

A.2.1 Variance comparison with the DR extensions

Next, we provide a theoretical result comparing the variance of the MR estimator with

these DR extension methods.

Proposition A.2.1
When the weights w(y) are known exactly and the outcome model is exact, i.e.,

µ̂(a, x) = µ(a, x) = E[Y | X = x, A = a] in the DR estimator ◊̂fl̃
DR defined above,

Varfib [◊̂fl̃
DR] ≠ Varfib [◊̂MR]

Ø
1
n
Efib

Ë
Varfib [fl(A, X) | Y ] Y 2

≠ Varfib [fl(A, X)µ(A, X) | X]
È

≠ �,

where � := 1
nEfib [(fl2(A, X) ≠ fl̃2(A, X)) Var[Y | X, A]].
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Proof of Proposition A.2.1. Using the fact that µ̂(a, x) = µ(a, x) and the law of total

variance, we get that

n Varfib [◊̂fl̃
DR] = Varfib [fl̃(A, X) (Y ≠ µ̂(A, X)) +

ÿ

aÕœA

µ̂(aÕ, X)fiú(aÕ
| X)]

= Varfib [fl̃(A, X) (Y ≠ µ̂(A, X)) + Efiú [µ̂(A, X) | X]]

= Varfib [fl̃(A, X) (Y ≠ µ(A, X)) + Efiú [µ(A, X) | X]]

= Varfib [Efib [fl̃(A, X) (Y ≠ µ(A, X)) + Efiú [µ(A, X) | X] | X, A]]

+ Efib [Varfib [fl̃(A, X) (Y ≠ µ(A, X)) + Efiú [µ(A, X) | X] | X, A]]

= Varfib [Efiú [µ(A, X) | X]] + Efib [fl̃2(A, X)Var[Y | X, A]]

= Varfib [Efiú [µ(A, X) | X]] + Efib [fl2(A, X) Var[Y | X, A]]

+ Efib [(fl̃2(A, X) ≠ fl2(A, X)) Var[Y | X, A]]
¸ ˚˙ ˝

≠n �

= Varfib [Efib [fl(A, X) µ(A, X) | X]] + Efib [fl2(A, X) Var[Y | X, A]] ≠ n �.

Again, using the law of total variance we can rewrite the second term on the RHS above as,

Efib [fl2(A, X) Var[Y | X, A]]

= Varfib [fl(A, X) Y ] ≠ Varfib [fl(A, X) µ(A, X)]

= Varfib [Efib [fl(A, X) | Y ] Y ] + Efib [Varfib [fl(A, X) | Y ] Y 2]

≠ Varfib [fl(A, X) µ(A, X)]

= Varfib [w(Y ) Y ] + Efib [Varfib [fl(A, X) | Y ] Y 2] ≠ Varfib [fl(A, X) µ(A, X)]

= n Varfib [◊̂MR] + Efib [Varfib [fl(A, X) | Y ] Y 2] ≠ Varfib [fl(A, X) µ(A, X)].

Putting this together, we get that

n Varfib [◊̂fl̃
DR]

= n Varfib [◊̂MR] + Efib [Varfib [fl(A, X) | Y ] Y 2] ≠ Varfib [fl(A, X) µ(A, X)]

+ Varfib [Efib [fl(A, X) µ(A, X) | X]] ≠ n �

= n Varfib [◊̂MR] + Efib [Varfib [fl(A, X) | Y ] Y 2] ≠ Efib [Varfib [fl(A, X) µ(A, X) | X]] ≠ n �,

where in the last step above, we again use the law of total variance. Rearranging the above

leads us to the result.
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Intuition Note that for both of the DR extensions under consideration, the modified

ratios fl̃(a, x) satisfy 0 Æ fl̃(a, x) Æ fl(a, x) and hence � Ø 0 (using the definition of � in

Proposition A.2.1). When the modified ratios fl̃(a, x) are ‘close’ to the true policy ratios

fl(a, x), then using the definition of �, we have that � ¥ 0. In this case, the result above

provides a similar intuition to Proposition 2.3.3 in the main text. Specifically, in this

case we have that if Varfib [fl(A, X) Y | Y ] is greater than Varfib [fl(A, X) µ(A, X) | X] on

average, the variance of the MR estimator will be less than that of the DR extension under

consideration. Intuitively, this will occur when the dimension of context space X is high

because in this case the conditional variance over X and A, Varfib [fl(A, X) Y | Y ] is likely

to be greater than the conditional variance over A, Varfib [fl(A, X) µ(A, X) | X].

In contrast if the modified ratios fl̃(a, x) di�er substantially from fl(a, x), then � will

be large and the variance of MR may be higher than that of the resulting DR extension.

However, this comes at the cost of significantly higher bias in the DR extension and

consequently MSE of the DR extension will be high in this case.

A.3 Weight estimation error

In this section, we theoretically investigate the e�ects of using the estimated importance

weights ŵ(y) rather than fl̂(a, x) on the bias and variance of the resulting OPE estimator.

Further to our discussion in Section 2.3.1, we focus in this section on the approximation

error when using a wide neural network to estimate the weights ŵ(y). To this end, we use

recent results regarding the generalization of wide neural networks [Lai et al., 2023] to show

that the estimation error of the approximation step (ii) in the Section 2.3.1 declines with

increasing number of training data when ŵ(y) is estimated using wide neural networks.

Before providing the main result, we explicitly lay out the assumptions needed.

A.3.1 Using wide neural networks to approximate the weights
ŵ(y)

Assumption A.3.1. Let w̃(y) := Efib [fl̂(A, X) | Y = y]. Suppose w̃ œ H1 and ||w̃||H1
Æ R

for some constant R, where H1 is the reproducing kernel Hilbert space (RKHS) associated

with the Neural Tangent Kernel K1 associated with 2 layer neural network defined on R.

Assumption A.3.2. There exists an M œ [0, Œ) such that Pfib(|Y | Æ M) = 1.
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Assumption A.3.3. fl̂(ai, xi) satisfies

fl̂(ai, xi) = w̃(yi) + ÷i,

where ÷i
iid
≥ N (0, ‡2) for some ‡ > 0.

Theorem A.3.4
Suppose that the IPW and MR estimators are defined as,

◊̃IPW := 1
n

nÿ

i=1
fl̂(ai, xi) yi, and ◊̃MR := 1

n

nÿ

i=1
ŵm(yi) yi,

where ŵm(y) is obtained by regressing to the estimated policy ratios fl̂(a, x) using m

i.i.d. training samples Dtr := {(xtr
i , atr

i , ytr
i )}m

i=1, i.e., by minimising the loss

L(„) = E(X,A,Y )≥Dtr

Ë
(fl̂(A, X) ≠ f„(Y ))2È

.

Suppose Assumptions A.3.1-A.3.3 hold, then for any given ” œ (0, 1), if f„ is a two-

layer neural network with width k that is su�ciently large and stops the gradient

flow at time tú Ã m2/3, then for su�ciently large m, there exists a constant C1

independent of ” and m, such that

|Bias(◊̃MR) ≠ Bias(◊̃IPW)| Æ C1 m≠1/3 log 6
”

holds with probability at least (1 ≠ ”)(1 ≠ ok(1)). Moreover, there exist constants

C2, C3 independent of ” and m such that

n(Varfib [◊̃IPW] ≠ Varfib [◊̃MR])

Ø Efib [Varfib [fl̂(A, X) Y | Y ]]
¸ ˚˙ ˝

Ø0

≠C2 m≠2/3 log2 6
”

≠ C3 m≠1/3 log 6
”

holds with probability at least (1 ≠ ”)(1 ≠ ok(1)). Here, the randomness comes from

the joint distribution of training samples and random initialization of parameters in

the neural network f„.

Proof of Theorem A.3.4. The proof of this theorem relies on [Lai et al., 2023, Theorem

4.1]. Recall the definition w̃(Y ) := Efib[fl̂(A, X) | Y ]. We can rewrite our setup in the

setting of [Lai et al., 2023, Theorem 4.1], by relabelling fl̂(a, x) in our setup as y in their

setup and relabelling y in our setup as x in their setup. Then, given ” œ (0, 1), from [Lai
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et al., 2023, Theorem 4.1], it follows that under Assumptions A.3.1-A.3.3 that there exists

a constant C independent of ” and m, such that

Efib [‘2] Æ C m≠2/3 log2 6
”

(A.1)

holds with probability at least (1 ≠ ”)(1 ≠ ok(1)), where ‘ := ŵm(Y ) ≠ w̃(Y ). Recall from

Proposition 2.3.4 that

|Bias(◊̃MR) ≠ Bias(◊̃IPW)| = |Efib [‘ Y ]|.

From this it follows using Cauchy-Schwarz inequality that,

|Bias(◊̃MR) ≠ Bias(◊̃IPW)| = |Efib [‘ Y ]| Æ

1
Efib [‘2]Efib [Y 2]

21/2
.

Combining the above with Eqn. (A.1), it follows that,

|Bias(◊̃MR) ≠ Bias(◊̃IPW)| Æ C1/2 m≠1/3 log 6
”

(Efib [Y 2])1/2 = C1 m≠1/3 log 6
”

holds with probability at least (1 ≠ ”)(1 ≠ ok(1)), where C1 = C1/2 (Efib [Y 2])1/2.

Next, to prove the variance result, we recall from Proposition 2.3.4 that

n(Varfib [◊̃IPW] ≠ Varfib [◊̃MR]) = Efib [Varfib [fl̂(A, X) | Y ] Y 2] ≠ Varfib [‘ Y ] ≠ 2 Cov(‘ Y, w̃(Y ) Y )

Now note that, under Assumption A.3.2,

Varfib [‘ Y ] Æ Efib [(‘ Y )2] Æ M2Efib [‘2] Æ C M2 m≠2/3 log2 6
”

= C2 m≠2/3 log2 6
”

,

holds with probability at least (1 ≠ ”)(1 ≠ ok(1)), where C2 = C M2. Similarly, we have

that with probability at least (1 ≠ ”)(1 ≠ ok(1)),

|Cov(‘ Y, w̃(Y ) Y )| = |Efib [‘ w̃(Y ) Y 2] ≠ Efib [‘ Y ]Efib [w̃(Y ) Y ]|

Æ |Efib [‘ w̃(Y ) Y 2]| + |Efib [‘ Y ]Efib [w̃(Y ) Y ]|

Æ

1
Efib [‘2]Efib [w̃(Y )2 Y 4]

21/2
+ (Efib [‘2]Efib [Y 2])1/2

|Efib [w̃(Y ) Y ]|

= (Efib [‘2])1/2
1
(Efib [w̃(Y )2 Y 4])1/2 + (Efib [Y 2])1/2

|Efib [w̃(Y ) Y ]|
2

Æ C3 m≠1/3 log 6
”

,

where C3 = C (Efib [w̃(Y )2 Y 4])1/2 + (Efib [Y 2])1/2
|Efib [w̃(Y ) Y ]|, and we use Cauchy-Schwarz

inequality in the third step above. Putting this together, we obtain the required result.
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Intuition This theorem shows that as the number of training samples m increases, the

biases of MR and IPW estimators become roughly equal, whereas the variance of MR

estimator falls below that of the IPW estimator. The empirical results shown in Appendix

A.6.2 are consistent with this result. Moreover, in Theorem A.3.4, the estimated policy

ratio fl̂(a, x) is fixed for increasing m, i.e., we do not update fl̂(a, x) as more training data

becomes available. While this may seem as a disadvantage for the IPW estimator, we

point out that the result also holds when the policy ratio is exact (i.e., fl̂(a, x) = fl(a, x))

and hence the IPW estimator is unbiased.

Relaxing Assumption A.3.3 Lai et al. [2023][Theorem 4.1] suppose that the data has

the relationship shown in Assumption A.3.3. However, the theorem relies on Corollary 4.4

in Lin et al. [2020], which requires a strictly weaker assumption (Assumption 1 in Lin et al.

[2020]). Therefore, we can relax Assumption A.3.3 to the following assumption.

Assumption A.3.5. There exists positive constants Q and M such that for all l Ø 2 with

l œ N

Efib [fl̂(A, X)l
| Y ] Æ

1
2 l! M l≠2 Q2

pfib-almost surely.

It is easy to check that Assumption A.3.5 is strictly weaker than Assumption A.3.3,

and is also satisfied if the policy ratio fl̂(A, X) is almost surely bounded. For simplicity,

we use the stronger assumption in our Proposition A.3.4.

A.4 Generalised formulation of the MIPS estimator
[Saito and Joachims, 2022]

As described in Section 2.3.1, the MIPS estimator proposed by Saito and Joachims [2022]

assumes the existence of action embeddings E which summarise all relevant information

about the action A, and achieves a lower variance than the IPW estimator. To achieve

this, the MIPS estimator only considers the shift in the distribution of (X, E) as a result of

policy shift, instead of considering the shift in (X, A) (as in IPW estimator). In this section,

we show that this idea can be generalised to instead consider general representations

R of the context-action pair (X, A), which encapsulate all relevant information about
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the outcome Y . The MIPS estimator is a special case of this generalised setting where

the representation R is of the form (X, E).

Generalised MIPS (G-MIPS) estimator Suppose that there exists an embedding

R of the context-action pair (X, A), with the Bayesian network shown in Figure A.1.

Here, R may be a lower-dimensional representation of the (X, A) pair which contains all

the information necessary to predict the outcome Y . This corresponds to the following

conditional independence assumption:

Assumption A.4.1. The context-action pair (X, A) has no direct e�ect on the outcome

Y given R, i.e., Y ‹‹ (X, A) | R.

(X, A) R Y

Figure A.1: Bayesian network corresponding to Assumption A.4.1.

As illustrated in Figure A.1, Assumption A.4.1 means that the embedding R fully

mediates every possible e�ect of (X, A) on Y . The generalised MIPS estimator ◊̂G-MIPS

of target policy value, Efiú [Y ], is defined as

◊̂G-MIPS := 1
n

nÿ

i=1

pfiú(ri)
pfib(ri)

yi,

where pfib(r) denote the density of R under the behaviour policy (likewise for pfiú(r)). Under

assumption A.4.1, ◊̂G-MIPS provides an unbiased estimator of target policy value. Similar to

Lemma 2.3.1, the density ratio pfiú (r)
pfib (r) can be estimated by solving the regression problem

arg min
f

Efib

A
fiú(A | X)
fib(A | X) ≠ f (R)

B2

. (A.2)

A.4.1 Variance reduction of G-MIPS estimator

By only considering the shift in the embedding R, the G-MIPS estimator achieves a

lower variance relative to the vanilla IPW estimator. The following result, which is a

straightforward extension of [Saito and Joachims, 2022, Theorem 3.6], formalises this.



A. Marginal Density Ratio for O�-Policy Evaluation in Contextual Bandits 102

Proposition A.4.1 (Variance reduction of G-MIPS)

When the ratios fl(a, x) and pfiú (r)
pfib (r) are known exactly then under Assumption A.4.1,

we have that Efib[◊̂IPW] = Efib[◊̂G-MIPS] = Efiú [Y ]. Moreover,

Varfib [◊̂IPW] ≠ Varfib [◊̂G-MIPS] Ø
1
n
Efib

Ë
E[Y 2

| R]Varfib [fl(A, X) | R]
È

Ø 0.

Proof of Proposition A.4.1. The following proof, which is included for completeness, is a

straightforward extension of [Saito and Joachims, 2022, Theorem 3.6].

n(Varfib [◊̂IPW] ≠ Varfib [◊̂MIPS])

= Varfib

C
fiú(A|X)
fib(A|X) Y

D

≠ Varfib

C
pfiú(R)
pfib(R) Y

D

= Varfib

S

UEfib

S

Ufiú(A|X)
fib(A|X) Y

------
R

T

V

T

V + Efib

S

UVarfib

S

Ufiú(A|X)
fib(A|X) Y

------
R

T

V

T

V ≠ Varfib

S

UEfib

S

Upfiú(R)
pfib(R) Y

------
R

T

V

T

V

≠ Efib

S

UVarfib

S

Upfiú(R)
pfib(R) Y

------
R

T

V

T

V

Now using the conditional independence Assumption A.4.1, the first term on the RHS

above becomes,

Varfib

S

UEfib

S

Ufiú(A|X)
fib(A|X) Y

------
R

T

V

T

V = Varfib

S

UEfib

S

Ufiú(A|X)
fib(A|X)

------
R

T

V Efib [Y |R]
T

V

= Varfib

C
pfiú(R)
pfib(R) Efib [Y |R]

D

,

where in the last step above we use the fact that

Efib

S

Ufiú(A|X)
fib(A|X)

------
R

T

V = pfiú(R)
pfib(R) .

Putting this together, we get that

n(Varfib [◊̂IPW] ≠ Varfib [◊̂MIPS])

= Efib

S

UVarfib

S

Ufiú(A|X)
fib(A|X) Y

------
R

T

V

T

V ≠ Efib

S

UVarfib

S

Upfiú(R)
pfib(R) Y

------
R

T

V

T

V . (A.3)

Since we have that

Efib

S

Ufiú(A|X)
fib(A|X) Y

------
R

T

V = Efib

S

Ufiú(A|X)
fib(A|X)

------
R

T

V Efib [Y |R] = pfiú(R)
pfib(R) Efib [Y |R] ,
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Eq. (A.3) becomes,

Efib

S

UVarfib

S

Ufiú(A|X)
fib(A|X) Y

------
R

T

V

T

V ≠ Efib

S

UVarfib

S

Upfiú(R)
pfib(R) Y

------
R

T

V

T

V

= Efib

S

UEfib

S

U
A

fiú(A|X)
fib(A|X) Y

B2
------
R

T

V ≠ Efib

S

U
A

pfiú(R)
pfib(R) Y

B2
------
R

T

V

T

V

= Efib

S

UEfib

S

U
A

fiú(A|X)
fib(A|X)

B2
------
R

T

V Efib

Ë
Y 2

|R
È

≠

A
pfiú(R)
pfib(R)

B2

Efib

Ë
Y 2

|R
È
T

V

= Efib

S

WUEfib

Ë
Y 2

|R
È

Q

caEfib

S

U
A

fiú(A|X)
fib(A|X)

B2
------
R

T

V ≠

Q

aEfib

S

Ufiú(A|X)
fib(A|X)

------
R

T

V

R

b
2 R

db

T

XV

= Efib

S

UEfib

Ë
Y 2

|R
È

Varfib

S

Ufiú(A|X)
fib(A|X)

------
R

T

V

T

V .

Intuition Here, R contains all relevant information regarding the outcome Y . Moreover,

intuitively R can be thought of as the state obtained by ‘filtering out’ relevant information

about Y from (X, A). Therefore, R contains less ‘redundant’ information regarding the

outcome Y as compared to the covariate-action pair (X, A). As a result, the G-MIPS

estimator which only considers the shift in the marginal distribution of R due to the

policy shift is more e�cient than the IPW estimator, which considers the shift in the

joint distribution of (X, A) instead. In fact, as the amount of ‘redundant’ information

regarding Y decreases in the embedding R, the G-MIPS estimator becomes increasingly

e�cient with decreasing variance. We formalise this as follows:

Assumption A.4.2. Assume there exist embeddings R(1), R(2) of the covariate-action pair

(X, A), with Bayesian network shown in Figure A.2. This corresponds to the following

conditional independence assumptions:

R(2)
‹‹ (X, A) | R(1), and Y ‹‹ (R(1), X, A) | R(2).

(X, A) R(1) R(2) Y

Figure A.2: Bayesian network corresponding to Assumption A.4.2.
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We can define G-MIPS estimators for these embeddings to obtain unbiased OPE

estimators under Assumption A.4.2 as follows:

◊̂(j)
G-MIPS := 1

n

nÿ

i=1

pfiú(r(j)
i )

pfib(r(j)
i )

yi,

for j œ {1, 2}. Here, pfiú (r(j))
pfib (r(j)) is the ratio of marginal densities of R(j) under target and

behaviour policies. We next show that the variance of ◊̂(j)
G-MIPS decreases with increasing j.

Proposition A.4.2

When the ratios fl(a, x), w(y) and pfiú (r(j))
pfib (r(j)) are known exactly for j œ {1, 2}, then

under Assumption A.4.2 we get that

Efib [◊̂IPW] = Efib [◊̂(1)
G-MIPS] = Efib [◊̂(2)

G-MIPS] = Efib [◊̂MR] = Efiú [Y ].

Moreover,

Varfib [◊̂IPW] Ø Varfib [◊̂(1)
G-MIPS] Ø Varfib [◊̂(2)

G-MIPS] Ø Varfib [◊̂MR].

Proof of Proposition A.4.2. First, we prove that the G-MIPS estimators are unbiased using

induction on j. We define R(0) := (X, A) and ◊̂(0)
G-MIPS defined as

◊̂(0)
G-MIPS := 1

n

nÿ

i=1

pfiú(r(0)
i )

pfib(r(0)
i )

yi,

recovers the IPW estimator ◊̂IPW. When j = 0, we know that ◊̂(0)
G-MIPS = ◊̂IPW is unbiased.

Now, assume that Efib [◊̂(j)
G-MIPS] = Efiú [Y ].

Conditional on R(j), R(j+1) does not depend on the policy. Therefore,

pfiú(r(j))
pfib(r(j)) = pfiú(r(j)) p(r(j+1)

| r(j))
pfib(r(j)) p(r(j+1) | r(j)) = pfiú(r(j), r(j+1))

pfib(r(j), r(j+1)) .

And therefore,

pfiú(r(j+1))
pfib(r(j+1)) =

⁄

r(j)

pfiú(r(j), r(j+1))
pfib(r(j), r(j+1)) pfib(r(j)

| r(j+1)) dr(j)

=
⁄

r(j)

pfiú(r(j))
pfib(r(j)) pfib(r(j)

| r(j+1)) dr(j)

= Efib

S

Upfiú(R(j))
pfib(R(j))

------
R(j+1) = r(j+1)

T

V .
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Using this and the fact that R(j)
‹‹ Y | R(j+1), we get that

Efib

Ë
◊̂(j+1)

G-MIPS
È

= Efib

C
pfiú(R(j+1))
pfib(R(j+1)) Y

D

= Efib

C
pfiú(R(j+1))
pfib(R(j+1)) Efib [Y |R(j+1)]

D

= Efib

S

UEfib

S

Upfiú(R(j))
pfib(R(j))

------
R(j+1)

T

V Efib [Y |R(j+1)]
T

V

= Efib

S

UEfib

S

Upfiú(R(j))
pfib(R(j)) Y

------
R(j+1)

T

V

T

V

= Efib

C
pfiú(R(j))
pfib(R(j)) Y

D

= Efib

Ë
◊̂(j)

G-MIPS
È

= Efiú [Y ].

Next, to prove the variance result we consider the di�erence

Varfib [◊̂(j)
G-MIPS] ≠ Varfib [◊̂(j+1)

G-MIPS]

= 1
n

A

Varfib

C
pfiú(R(j))
pfib(R(j)) Y

D

≠ Varfib

C
pfiú(R(j+1))
pfib(R(j+1)) Y

DB

= 1
n

Q

aVarfib

S

UEfib

S

Upfiú(R(j))
pfib(R(j)) Y

------
R(j+1)

T

V

T

V + Efib

S

UVarfib

S

Upfiú(R(j))
pfib(R(j)) Y

------
R(j+1)

T

V

T

V

≠ Varfib

C
pfiú(R(j+1))
pfib(R(j+1)) Efib [Y | R(j+1)]

D

≠ Efib

S

U
A

pfiú(R(j+1))
pfib(R(j+1))

B2

Varfib [Y | R(j+1)]
T

V

R

b

where in the last step we use the law of total variance. Now, using the fact that R(j)
‹‹

Y | R(j+1), we can rewrite the expression above as

= 1
n

Q

aVarfib

S

UEfib

S

Upfiú(R(j))
pfib(R(j))

------
R(j+1)

T

V Efib [Y |R(j+1)]
T

V + Efib

S

UVarfib

S

Upfiú(R(j))
pfib(R(j)) Y

------
R(j+1)

T

V

T

V

≠ Varfib

C
pfiú(R(j+1))
pfib(R(j+1)) Efib [Y | R(j+1)]

D

≠ Efib

S

U
A

pfiú(R(j+1))
pfib(R(j+1))

B2

Varfib [Y | R(j+1)]
T

V

R

b

= 1
n

Q

aEfib

S

UVarfib

S

Upfiú(R(j))
pfib(R(j)) Y

------
R(j+1)

T

V

T

V ≠ Efib

S

U
A

pfiú(R(j+1))
pfib(R(j+1))

B2

Varfib [Y | R(j+1)]
T

V

R

b.

Moreover, again using the conditional independence R(j)
‹‹ Y | R(j+1), we can expand the



A. Marginal Density Ratio for O�-Policy Evaluation in Contextual Bandits 106

first term in the expression above as follows:

Efib

S

UVarfib

S

Upfiú(R(j))
pfib(R(j)) Y

------
R(j+1)

T

V

T

V = Efib

S

UEfib

S

Up2
fiú(R(j))

p2
fib(R(j))

------
R(j+1)

T

V Efib [Y 2
|R(j+1)]

≠

Q

aEfib

S

Upfiú(R(j))
pfib(R(j))

------
R(j+1)

T

VEfib [Y |R(j+1)]
R

b
2 T

V

Ø Efib

S

U

Q

aEfib

S

Upfiú(R(j))
pfib(R(j))

------
R(j+1)

T

V

R

b
2

Efib [Y 2
|R(j+1)]

≠

A
pfiú(R(j+1))
pfib(R(j+1))Efib [Y |R(j+1)]

B2 T

V

= Efib

S

U
A

pfiú(R(j+1))
pfib(R(j+1))

B2

Varfib [Y | R(j+1)]
T

V.

Here, to get the inequality above, we use the fact that E[X2] Ø (E[X])2. Putting this

together, we get that Varfib [◊̂(j)
G-MIPS] ≠ Varfib [◊̂(j+1)

G-MIPS] Ø 0.

Moreover, the result Varfib [◊̂(2)
G-MIPS] Ø Varfib [◊̂MR] follows straightforwardly from above

by defining R(3) := Y . Then, the embeddings satisfy the causal structure

R(0)
æ R(1)

æ R(2)
æ R(3)

æ Y.

Using the result above, we know that Varfib[◊̂(2)
G-MIPS] Ø Varfib[◊̂(3)

G-MIPS]. But now it is

straightforward to see that ◊̂(3)
G-MIPS = ◊̂MR, and the result follows.

Intuition Here, R(j+1) can be thought of as the embedding obtained by ‘filtering out’ rele-

vant information about Y from R(j). As such, the amount of ‘redundant’ information regard-

ing the outcome Y decreases successively along the sequence R(0)(:= (X, A)), R(1), R(2). As a

result, the G-MIPS estimators which only consider the shift in the marginal distributions of

R(j) due to policy shift become increasingly e�cient with decreasing variance as j increases.

Define the representation R(3) := Y , then the corresponding G-MIPS estimator reduces to

the MR estimator, i.e., ◊̂(3)
G-MIPS = ◊̂MR. Moreover, this estimator has minimum variance

among all the G-MIPS estimators {◊̂(j)
G-MIPS}0ÆjÆk, as the representation R(3) contains

precisely the least amount of information necessary to obtain the outcome Y . In other

words, Y itself serves as the ‘best embedding’ of covariate-action pair R(0) which contains

all relevant information regarding Y . We verify this empirically in Appendix A.6.2 by
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reproducing the experimental setup in Saito and Joachims [2022] along with the MR baseline.

Additionally, the MR estimator does not rely on assumptions like A.4.1 for unbiasedness.

In addition to this, solving the regression problem in Eq. (A.2) will typically be more

di�cult when R is higher dimensional (as is likely to be the case for many choices of

embeddings R), leading to high bias. In contrast, for MR the embedding R = Y is one

dimensional and therefore the regression problem is significantly easier to solve and yields

lower bias. Our empirical results in Appendix A.6 confirm this.

A.4.2 Doubly robust G-MIPS estimators

Consider the setup for the G-MIPS estimator shown in Figure A.1. In this case, we can

derive a doubly robust extension of the G-MIPS estimator, denoted as GM-DR, which uses

an estimate of the conditional mean µ̃(r) ¥ E[Y | R = r] as a control variate to decrease

the variance of G-MIPS estimator. This can be explicitly written as follows:

◊̃DM-DR := 1
n

nÿ

i=1

pfiú(ri)
pfib(ri)

(yi ≠ µ̃(ri)) + ÷̃(fiú). (A.4)

where ÷̃(fiú) = 1
n

qn
i=1

q
rÕœR µ̃(rÕ) pfiú(rÕ

| xi) is the analogue of the direct method. Here,

R denotes the space of the possible of the representations R1. Moreover, given the density

p(r | x, a), we can compute pfiú(r | x) using

pfiú(r | x) =
ÿ

aÕœA

p(r | x, aÕ) fiú(aÕ
| x).

It is straightforward to extend ideas from Dudík et al. [2014b] to show that estimator ◊̃DM-DR

is doubly robust in that it will yield accurate value estimates if either the importance

weights pfiú (r)
pfib (r) or the outcome model µ̃(r) is well estimated.

There is no analogous DR extension of the MR estimator A consequence of

considering the embedding R = Y (as in MR) is that in this case we do not have an

analogous doubly robust extension as above. To see why this is the case, note that

when R = Y , we get that µ̃(r) = E[Y | R = r] = E[Y | Y = y] = y. If we substitute

this µ̃(r) in (A.4), we are simply left with ÷̃(fiú) on the right hand side (as the first

term cancels out). This means that the resulting estimator does not retain the doubly

robust nature as we no longer obtain an accurate estimate if either the outcome model

or the importance ratios are well estimated.
1the

q
rÕœR can be replaced with

s
rÕœR drÕ when R is continuous
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A.5 Application to causal inference

In this section, we investigate the application of the MR estimator for the estimation

of average treatment e�ect (ATE). In this setting, we suppose that A = {0, 1}, and the

goal is to estimate ATE defined as follows:

ATE := E[Y (1) ≠ Y (0)]

Here, we use the potential outcomes notation [Robins, 1986] to denote the outcome under

a deterministic policy fiú(aÕ
| x) = (aÕ = a) as Y (a).

Specifically, the IPW estimator applied to ATE estimation yields:

[ATEIPW = 1
n

nÿ

i=1
flATE(ai, xi) ◊ yi,

where

flATE(a, x) := (a = 1) ≠ (a = 0)
fib(a|x) .

Similarly, the MR estimator can be written as

[ATEMR = 1
n

nÿ

i=1
wATE(yi) ◊ yi,

where

wATE(y) = pfi(1)(y) ≠ pfi(0)(y)
pfib(y) ,

and fi(a)(aÕ
| x) := (aÕ = a) for a œ {0, 1}.

Again, using the fact that wATE(Y ) a.s.= E[flATE(A, X) | Y ], we can obtain wATE by

minimising a simple mean-squared loss:

wATE = arg min
f

Efib

5 (A = 1) ≠ (A = 0)
fib(A|X) ≠ f(Y )

62
.

Proposition A.5.1 (Variance comparison with IPW ATE estimator)

When the weights flATE(a, x) and wATE(y) are known exactly, we have that Var[[ATEMR] Æ

Var[[ATEIPW]. Specifically,

Var[[ATEIPW] ≠ Var[[ATEMR] = 1
n
E

Ë
Var [flATE(A, X)|Y ] Y 2

È
Ø 0.
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Proof of Proposition A.5.1. We have

Var[[ATEIPW] ≠ Var[[ATEMR] = 1
n

(Var[flATE(A, X) Y ] ≠ Var[wATE(Y ) Y ]) . (A.5)

Using the tower law of variance, we get that

Var[flATE(A, X) Y ] = Var[E[flATE(A, X) Y | Y ]] + E[Var[flATE(A, X) Y | Y ]]

= Var[E[flATE(A, X) | Y ] Y ] + E[Var[flATE(A, X) | Y ] Y 2]

= Var[wATE(Y ) Y ] + E[Var[flATE(A, X) | Y ] Y 2].

Putting this together with (A.5) we obtain,

Var[[ATEIPW] ≠ Var[[ATEMR] = 1
n
E[Var[flATE(A, X) | Y ] Y 2],

which straightforwardly leads to the result.

Given the above definitions, the IPW estimator for E[Y (a)] would only consider

datapoints with A = a, as it weights the samples using the policy ratios (A = a)/fib(A|X)

which are only non-zero when A = a. This is however not the case with the MR estimator,

as it uses the weights pfiú(Y )/pfib(Y ) which are not necessarily zero for A ”= a. Therefore,

MR uses all evaluation datapoints D when estimating E[Y (a)]. The MR estimator therefore

leads to a more e�cient use of evaluation data in this example.

Likewise, the doubly robust (DR) estimator applied to ATE estimation yields,

[ATEDR := 1
n

nÿ

i=1
flATE(ai, xi) (yi ≠ µ̂(ai, xi)) + 1

n

nÿ

i=1
(µ̂(1, xi) ≠ µ̂(0, xi)) ,

where µ̂(a, x) ¥ E[Y | X = x, A = a]. Like in classical o�-policy evaluation, DR yields

an accurate estimator of ATE when either the weights flATE(a, x) or the outcome model

i.e., µ̂(a, x) = E[Y | X = x, A = a], are well estimated. However, despite this doubly

robust nature of the estimator, we can show that the variance of the DR estimator may

be higher than that of the MR estimator in many cases. The following result formalises

this variance comparison between the DR and MR estimators, and is analogous to the

result in Proposition 2.3.3 derived for classical o�-policy evaluation.
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Proposition A.5.2 (Variance comparison with DR ATE estimator)
When the weights flATE(a, x) and wATE(y) are known exactly,

Var[[ATEDR] ≠ Var[[ATEMR]

Ø
1
n
E [Var [flATE(A, X) Y | Y ] ≠ Var [flATE(A, X)µ(A, X) | X]] ,

where µ(A, X) := E[Y | X, A].

Proof of Proposition A.5.2. Using the law of total variance, we get that

n Var[[ATEDR] = Var[flATE(A, X) (Y ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X))]

= Var[E[flATE(A, X) (Y ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X)) | X, A]]

+ E[Var[flATE(A, X) (Y ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X)) | X, A]]

= Var[flATE(A, X) (µ(A, X) ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X))]

+ E[fl2
ATE(A, X)Var[Y | X, A]].

Again, using the law of total variance we can rewrite the first term on the RHS above as,

Var[flATE(A, X) (µ(A, X) ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X))]

= Var[E[flATE(A, X) (µ(A, X) ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X)) | X]]

+ E[Var[flATE(A, X) (µ(A, X) ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X)) | X]]

Ø Var[E[flATE(A, X) (µ(A, X) ≠ µ̂(A, X)) + (µ̂(1, X) ≠ µ̂(0, X)) | X]]

= Var[E[flATE(A, X) (µ(A, X) ≠ µ̂(A, X)) + flATE(A, X) µ̂(A, X) | X]]

= Var[E[flATE(A, X) µ(A, X) | X]],

where, in the second last step above we use the fact that

E[flATE(A, X) µ̂(A, X) | X] = µ̂(1, X) ≠ µ̂(0, X).

Putting this together, we get that

n Var[[ATEDR] Ø Var[E[flATE(A, X) µ(A, X) | X]] + E[fl2
ATE(A, X)Var[Y | X, A]].
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Therefore,

n (Var[[ATEDR] ≠ Var[[ATEMR])

Ø Var[E[flATE(A, X) µ(A, X) | X]] + E[fl2
ATE(A, X)Var[Y | X, A]] ≠ Var[wATE(Y ) Y ]

= Var[E[flATE(A, X) µ(A, X) | X]] + E[Var[flATE(A, X) Y | X, A]] ≠ Var[wATE(Y ) Y ]

= Var[E[flATE(A, X) µ(A, X) | X]] + Var[flATE(A, X) Y ] ≠ Var[E[flATE(A, X) Y | X, A]]

≠ Var[wATE(Y ) Y ]

= Var[E[flATE(A, X) µ(A, X) | X]] + Var[E[flATE(A, X) | Y ] Y ] + E[Var[flATE(A, X) | Y ] Y 2]

≠ Var[E[flATE(A, X) Y | X, A]] ≠ Var[wATE(Y ) Y ]

= Var[E[flATE(A, X) µ(A, X) | X]] + Var[wATE(Y ) Y ] + E[Var[flATE(A, X) | Y ] Y 2]

≠ Var[E[flATE(A, X) Y | X, A]] ≠ Var[wATE(Y ) Y ]

= Var[E[flATE(A, X) µ(A, X) | X]] ≠ Var[E[flATE(A, X) Y | X, A]] + E[Var[flATE(A, X) | Y ] Y 2]

= Var[flATE(A, X) µ(A, X)] ≠ E[Var[flATE(A, X) µ(A, X) | X]] ≠ Var[flATE(A, X) µ(A, X)]

+ E[Var[flATE(A, X) | Y ] Y 2]

= E
Ë
Var [flATE(A, X) | Y ] Y 2

≠ Var [flATE(A, X)µ(A, X) | X]
È

.

Proposition A.5.2 shows that if Var [Y flATE(A, X) | Y ] is greater than the conditional

variance Var [flATE(A, X)µ(A, X) | X] on average, the variance of the MR estimator will

be less than that of the DR estimator. Intuitively, this is likely to happen when the

dimension of context space X is high because in this case, the conditional variance over

X and A, Var [Y flATE(A, X) | Y ] is likely to be greater than the conditional variance

over A, Var [flATE(A, X)µ(A, X) | X].

A.6 Experimental Results

In this section, we provide additional experimental details for the results presented in the

main text. We also include extensive experimental results to provide further empirical

evidence in favour of the MR estimator.
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Computational details We ran our experiments on Intel(R) Xeon(R) CPU E5-2690

v4 @ 2.60GHz with 8GB RAM per core. We were able to use 150 CPUs in parallel

to iterate over di�erent configurations and seeds. However, we would like to note that

for each run our algorithms only requires 1 CPU and at most 30 minutes to run as our

neural networks are relatively small. Throughout our experiments, whenever the outcome

Y was continuous, we used a fully connected neural network with three hidden layers

with 512, 256 and 32 nodes respectively (and ReLU activation function) to estimate the

weights ŵ(y). On the other hand, when the outcome is discrete we can directly estimate

ŵ(y) ¥ E[fl̂(A, X) | Y = y] by calculating the sample mean of fl̂(A, X) on samples with

Y = y. Additionally, for each configuration of parameters in our experiments, we ran

experiments for 10 di�erent seeds (in {0, 1, . . . , 9}).

A.6.1 Alternative methodology of estimating MR

In addition to the OPE baselines like IPW, DM and DR estimators considered in the main

text, we also include empirically investigate an alternative methodology of estimating MR.

Below we describe this methodology, denoted as ‘MR (alt)’, in greater detail:

MR (alt)

Recall our definition of MR estimator:

◊̂MR := 1
n

nÿ

i=1
w(yi) yi.

In the main text, we propose estimating the weights w(y) first and using this to estimate

◊̂MR using the above expression. Alternatively, we can estimate h(y) := y w(y) using

h = arg min
f

Efib

S

WU

Q

aY
fiú(A|X)
fib(A|X) ≠ f(Y )

R

b
2T

XV .

Subsequently, the MR estimator can be written as:

◊̂MR = 1
n

nÿ

i=1
h(yi).

We refer to this alternative methodology as ‘MR-alt’ and compare it empirically against

the original methodology (which we simply refer to as ‘MR’). In general, it is di�cult

to say which of the two methods will perform better. Intuitively speaking, in cases
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where the behaviour of the quantity Y fiú(A|X)
fib(A|X) with varying Y is ‘smoother’ than that

of fiú(A|X)
fib(A|X) , the alternative method is expected to perform better. Our empirical results

in the next sections show that the relative performance of the two methods varies for

di�erent data generating mechanisms.

A.6.2 Synthetic data experiments

Here, we include additional experimental details for the synthetic data experiments

presented in Section 2.5.1 for completeness. For this experiment, we use the same setup

as the synthetic data experiment in Saito and Joachims [2022], reproduced by reusing

their code with minor modifications.

Setup Here, we sample the d-dimensional context vectors x from a standard normal

distribution. The setup used also includes 3-dimensional categorical action embeddings

E œ E , which are sampled from the following conditional distribution given action A = a,

p(e | a) =
3Ÿ

k=1

exp (–a,ek
)

q
eÕœEk

exp (–a,eÕ) ,

which is independent of the context X. {–a,ek
} is a set of parameters sampled independently

from the standard normal distribution. Each dimension of E has a cardinality of 10,

i.e., Ek = {1, 2, . . . , 10}.

Reward function The expected reward is then defined as:

q(x, e) =
3ÿ

k=1
÷k · (xT M xek

+ ◊T
x x + ◊T

e xek
),

where M , ◊x and ◊e are parameter matrices or vectors sampled from a uniform distribution

with range [≠1, 1]. xek
is a context vector corresponding to the k-th dimension of the action

embedding, which is unobserved to the estimators. ÷k specifies the importance of the k-th

dimension of the action embedding, sampled from Dirichlet distribution so that q3
k=1 ÷k = 1.

Behaviour and target policies The behaviour policy fib is defined by applying the

softmax function to q(x, a) = E[q(X, E) | A = a, X = x] as

fib(a | x) = exp (≠q(x, a))
q

aÕœA exp (≠q(x, aÕ)) .



A. Marginal Density Ratio for O�-Policy Evaluation in Contextual Bandits 114

For the target policy, we define the class of parametric policies,

fi–ú(a|x) = –ú (a = arg max
aÕœA

q(x, aÕ)) + 1 ≠ –ú

|A|
,

where –ú
œ [0, 1] controls the shift between the behaviour and target policies. As shown in

the main text, as –ú
æ 1, the shift between behaviour and target policies increases.

Baselines In the main text, we compare MR with DM, IPW, DR and MIPS estimators.

In addition to these baselines, here we also consider Switch-DR [Wang et al., 2017b] and

DR with Optimistic Shrinkage (DRos) [Su et al., 2020]. Following Saito and Joachims

[2022], we use the random forest [Breiman, 2001] along with 2-fold cross-fitting [Newey and

Robins, 2018] to obtain q̂(x, e) for DR and DM methods. To estimate pfib(a | x, e) for MIPS

estimator, we use logistic regression. We also include the results for MR estimated using

the alternative methodology described in Section A.6.1. We refer to this as ‘MR (alt)’.

Estimation of behaviour policy ‚fib and marginal ratio ŵ(y) We do not assume

that the true behaviour policy fib is known, and therefore estimate ‚fib using the available

training data. For the MR estimator, we estimate the behaviour policy using a random

forest classifier trained on 50% of the training data and use the rest of the training data

to estimate the marginal ratios ŵ(y) using multi-layer perceptrons (MLP). Moreover, for

a fair comparison we use a di�erent behaviour policy estimate ‚fib for all other baselines

which is trained on the entire training data.

Results

For this experiment, the results are computed over 10 di�erent sets of logged data replicated

with di�erent seeds, and in Figures A.3 - A.6 we use a total of m = 5000 training data.

Varying size of evaluation data n Figure A.3 shows that MR outperforms the other

baselines, in terms of MSE and squared bias, when the number of evaluation data n Æ 1000.

Additionally, we observe that in this experiment, MR estimated using our original methods

(‘MR’), yields better results than the alternative method of estimating MR (‘MR (alt)’).

Moreover, while the variance of DM is lower than that of MR, the DM method has a

high bias and consequently a high MSE. We note that while the di�erence between MSE
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(a) d = 1000, na = 100, –ú = 0.8

(b) d = 5000, na = 250, –ú = 0.8

(c) d = 5000, na = 250, –ú = 1.0

Figure A.3: MSE with varying size of evaluation dataset n for di�erent choices of parameters.

and variance of MIPS and MR estimators decreases with increasing evaluation data size,

MR still outperforms MIPS in terms of both MSE and variance.

Varying –ú Figure A.4 shows the results with increasing policy shift. It can be seen

that overall MR methods achieve the smallest MSE with increasing policy shift. Moreover,

the di�erence between MSE and variance of MR and IPW/DR methods increases with

increasing policy shift, showing that MR performs especially better than these baselines

when the di�erence between behaviour and target policies is large. Similarly, we observe

in Figure A.4 that as the shift between the behaviour and target policy increases with

increasing –ú, so does the di�erence between the MSE and variance of MR and the

MIPS estimators. This shows that generally MR outperforms MIPS estimator in terms of

variance and MSE, and that MR performs especially better than MIPS as the di�erence

between behaviour and target policies increases.
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(a) d = 100, na = 100, n = 100

(b) d = 100, na = 250, n = 100

(c) d = 1000, na = 250, n = 100

Figure A.4: MSE with varying –ú for di�erent choices of parameters.

Varying d and na Figures A.5 and A.6 show that MR outperforms the other baselines

as the context dimensions and/or number of actions increase. In fact, these figures show

that MR is significantly robust to increasing dimensions of action and context spaces,

whereas baselines like IPW and DR perform poorly in large action spaces.

Varying m Figure A.8 shows the results with increasing number of training data m.

We again observe that the MR methods ‘MR’ and ‘MR (alt)’ outperforms the other

baselines in terms of the MSE and squared bias even when the number of training data

is low. Moreover, the variance of both the MR estimators continues to improve with

increasing number of training data.

In this experiment, we observe that overall ‘MR (alt)’ performs worse than the original

MR estimator (‘MR’ in the figures). However, as we observe in Appendix A.6.5, this

does not happen consistently across all experiments, which suggests that the comparative
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performance of the two MR methods depends on the data generating mechanism.

(a) na = 20, n = 200, –ú = 0.8

(b) na = 100, n = 200, –ú = 0.8

(c) na = 250, n = 200, –ú = 0.8

Figure A.5: MSE with varying context dimensions d for di�erent choices of parameters.

Known policy ratios fl(a, x)

Our previous setting of unknown importance policy ratios fl(a, x) captures a wide variety

of real-world applications, ranging from health care to autonomous driving. In addition,

to demonstrate the utility of MR in settings with known fl(a, x), p(e | a, x) and unknown

w(y) (for our proposed method, MR), we have conducted additional experiments. Here,

we use a fixed budget of datapoints (denoted by N) for each baseline and for MR we

allocate m = 2000 of the available datapoints to estimate ŵ(y) and use the remaining

for evaluating the MR estimator (i.e., n = N ≠ 2000 for MR). In contrast, for IPW and

MIPS (since the importance ratios are already known), we use all of the N datapoints

to evaluate the o�-policy value (i.e. n = N for IPW and MIPS).
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(a) d = 1000, n = 100, –ú = 0.4

(b) d = 1000, n = 100, –ú = 0.8

(c) d = 1000, n = 100, –ú = 1.0

Figure A.6: MSE with varying number of actions na for di�erent choices of parameters.

The results included in Table A.1 show that MR achieves the smallest MSE among the

baselines for N Æ 6400. However, we observe that the MSE of IPW, DR and MIPS (with

true importance weights) falls below that of MR (with estimated weights ŵ) when the data

size N is large enough (i.e., N Ø 10, 000). This is to be expected since IPW, DR and MIPS

are unbiased (i.e., use ground truth importance ratios fl(a, x)) whereas MR uses estimated

weights ŵ(y) (and hence may be biased). MR still performs the best when N Æ 6400.

A.6.3 Experiments on classification datasets

Here, we conduct experiments on four classification datasets, OptDigits, PenDigits,

SatImage and Letter datasets from the UCI repository [Dua and Gra�, 2017], the Digits

dataset from scikit-learn library, as well as the Mnist [Deng, 2012] and CIFAR-100

datasets [Krizhevsky, 2009].
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Setup Following previous works [Dudík et al., 2014b, Kallus et al., 2021, Farajtabar

et al., 2018b, Wang et al., 2017b], the classification datasets are transformed to contextual

bandit feedback data. The classification dataset comprises {xi, agt
i }

n0

i=1, where xi œ X are

feature vectors and agt
i œ A are the ground-truth labels. In the contextual bandits setup,

the feature vectors xi are considered to be the contexts, whereas the actions correspond to

the possible class of labels. We split the dataset into training and testing datasets of sizes

m and n respectively. We present the results for a range of di�erent values of m and n.

Reward function Let X be a context with ground truth label Agt, we define the

reward for action A as:

Y := (A = Agt).

Behaviour and target policies Using the m training datapoints, we first train a

classifier f : X æ R|A| which takes as input the feature vectors xi and outputs a vector

of softmax probabilities over labels, i.e. the a-th component of the vector f(x), denoted

as (f(x))a corresponds to the estimated probability P(Agt = a | X = x).

Next, we use f to define the ground truth behaviour policy,

fib(a | x) = (f(x))a.

For the target policies, we use f to define a parametric class of target policies using

a trained classifier f : X æ R|A|.

fi–ú(a | x) = –ú
· (a = arg max

aÕœA

(f(x))aÕ) + 1 ≠ –ú

|A|
,

where –ú
œ [0, 1]. A value of –ú close to 1 leads to a near-deterministic and well-performing

policy. As –ú decreases, the policy gets increasingly worse and ‘noisy’. In this experiment,

we consider target policies fiú = fi–ú for –ú
œ {0.0, 0.2, 0.4, . . . , 1.0}.

Using the behaviour policy defined above, we generate the contextual bandits data

described with training and evaluation datasets of sizes m and n respectively.
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Estimation of behaviour policy ‚fib and marginal ratio ŵ(y) We do not assume

that the behaviour policy fib is known, and therefore estimate it using training data. To

estimate the behaviour policy ‚fib, we train a random forest classifier using the training data.

This estimate of behaviour policy is used for all the baselines in our experiment. Since

the reward is binary, we can estimate the marginal ratios ŵ(y) = Efib[fl̂(A, X) | Y = y]

by directly estimating the sample mean of fl̂(A, X) for datapoints with Y = y. We re-use

the m training datapoints to estimate this sample mean.

Baselines We compare our estimator with Direct Method (DM), IPW and DR estimators.

In addition, we also consider Switch-DR [Wang et al., 2017b] and DR with Optimistic

Shrinkage (DRos) [Su et al., 2020]. To estimate q̂(x, a) for DM and DR estimators, we

use random forest classifiers (since reward Y is binary). Moreover, because of the binary

nature of Y , the alternative method of estimating MR yields the same estimator as the

original method, therefore we do not consider the two separately here. Additionally, in

this experiment, we do not include MIPS (or G-MIPS) baseline, as there is no natural

informative embedding E of the action A.

Results

For this experiment, we compute the results over 10 di�erent sets of logged data replicated

with di�erent seeds. Figures A.9 - A.15 show the results corresponding to each baseline for

the di�erent datasets. It can be seen that across all datasets, the MR achieves the smallest

MSE with increasing evaluation data size n. Moreover, across all datasets, MR attains

the minimum MSE with relatively small number of evaluation data (n Æ 100).

Unlike the experiments in Section 2.5.1, we observe that the KL-divergence between

target and behaviour policy decreases as –ú increases (see Figure A.7). Therefore, as –ú

increases the shift between target and behaviour policies decreases. Figures A.9 - A.14

show that as –ú increases, the di�erence between the MSE, squared bias and variance of

MR and the other baselines decreases. This confirms our findings from earlier experiments

that MR performs especially better than the other baselines when the di�erence between

behaviour and target policies is large.



A. Marginal Density Ratio for O�-Policy Evaluation in Contextual Bandits 121

Figure A.7: KL divergence DKL(fib
|| fiú) with increasing –ú for the classification data

experiments. Here, we only include the results for a specific choice of parameters for the
Letter dataset. We observe similar results for other datasets and parameter choices.

Moreover, the figures also include results with increasing number of training data m. It

can be seen that MR out-performs the baselines even when the number of training data m

is small (m = 100). Moreover, the relative advantage of MR improves with increasing m.

(a) d = 1000, n = 10, –ú = 0.8

(b) d = 1000, n = 200, –ú = 0.8

(c) d = 1000, n = 800, –ú = 0.8

Figure A.8: MSE with varying number of training data m for di�erent choices of parameters.
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(a) Results with varying n for –ú = 0.2 and m = 1000

(b) Results with varying –ú for m = n = 1000

(c) Results with varying m for n = 1000 and –ú = 0.6

Figure A.9: Results for OptDigits dataset

A.6.4 Application to Average Treatment E�ect (ATE) estimation

In this subsection, we provide additional details for our experiment applying MR to the

problem of ATE estimation presented in the main text. We begin by describing the

dataset being used in this experiment.

Twins dataset We use the Twins dataset as studied by Louizos et al. [2017], which

comprises data from twin births in the USA between 1989-1991. The treatment a = 1

corresponds to being born the heavier twin and the outcome Y corresponds to the mortality

of each of the twins in their first year of life. Since the data includes records for both

twins, their outcomes would be considered as the two potential outcomes. Specifically,

Y (1) corresponds to the mortality of the heavier twin (and likewise for Y (0)). Closely

following the methodology of Louizos et al. [2017], we only chose twins which are the same

sex and weigh less than 2kgs. This provides us with a dataset of 11984 pairs of twins.
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(a) Results with varying n for –ú = 0.2 and m = 1000

(b) Results with varying –ú for m = n = 1000

(c) Results with varying m for –ú = 0.6 and n = 1000

Figure A.10: Results for PenDigits dataset

The mortality rate for the lighter twin is 18.9% and for the heavier twin is 16.4%, leading

to the ATE value being ◊ATE = ≠2.5%. For each twin-pair we obtained 46 covariates

relating to the parents, the pregnancy and birth.

Treatment assignment To simulate an observational study, we selectively hide one of

the two twins by defining the treatment variable A which depends on the feature GESTAT10.

This feature, which takes integer values from 0 to 9, is obtained by grouping the number

of gestation weeks prior to birth into 10 groups. Then we sample actions A as follows,

A | X ≥ Bern(Z/10),

where Z is GESTAT10, and X are all the 46 features corresponding to a twin pair

(including GESTAT10 ).

Using the treatment assignments defined above, we generate the observational data by

selectively hiding one of the two twins from each pair. Next, we randomly split this dataset
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(a) Results with varying n for –ú = 0.2 and m = 1000

(b) Results with varying –ú for n = 1000

(c) Results with varying m for –ú = 0.6 and n = 1000

Figure A.11: Results for SatImage dataset

into training and evaluation datasets of sizes m and n respectively. In this experiment,

we consider m = 5000 training datapoints.

Baselines Recall that ATE estimation can be formulated as the di�erence between

o�-policy values of deterministic policies fi(1) := (A = 1) and fi(0) := (A = 0). Therefore,

any OPE estimator can be applied to ATE estimation. In this experiment, we compare

our estimator against the baselines considered in our OPE experiments in Section A.6.3.

This includes the Direct Method (DM), IPW and DR estimators as well as Switch-DR

[Wang et al., 2017b] and DR with Optimistic Shrinkage (DRos) [Su et al., 2020]. To

estimate q̂(x, a) for DM and DR estimators, we use multi-layer perceptrons (MLP) trained

on the m training datapoints. Additionally, we estimate the behaviour policy ‚fib using

random forest classifier trained on the full training dataset.

Since the outcome in this experiment is binary, we estimate the weights w(y) =
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(a) Results with varying n for –ú = 0.2 and m = 1000

(b) Results with varying –ú for m = n = 1000

(c) Results with varying m for –ú = 0.6 and n = 1000

Figure A.12: Results for Letter dataset

Efib [fl̂(A, X) | Y = y] directly by estimating the sample mean of fl̂(A, X) for datapoints

with Y = y. This means that the alternative method of estimating MR yields the same

value as the default method. We therefore do not consider these estimators separately.

Additionally, since there is no natural embedding R of the covariate-action space which

satisfies the conditional dependence Assumption A.4.1, we do not consider the G-MIPS

(or MIPS) estimator either.

Performance metric For our evaluation, we consider the absolute error in ATE

estimation, ‘ATE, defined as:

‘ATE := |◊̂(n)
ATE ≠ ◊ATE|.
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(a) Results with varying n for –ú = 0.2 and m = 1000

(b) Results with varying –ú for m = n = 1000

(c) Results with varying m for –ú = 0.6 and n = 1000

Figure A.13: Results for Mnist dataset

Here, ◊̂(n)
ATE denotes the value of the ATE estimated using n evaluation datapoints. For

example, for the IPW estimator, the ◊̂(n)
ATE can be written as:

◊̂(n)
ATE = [ATEIPW = 1

n

nÿ

i=1

A
(ai = 1) ≠ (ai = 0)

‚fib(ai | xi)

B

yi.

All results for this experiment are provided in the main text.

A.6.5 Additional synthetic data experiments

In addition to the synthetic data experiments provided in Section 2.5.1, we also consider

an additional synthetic data setup to obtain further empirical evidence in favour of the

MR estimator, and also compare it against the generalised version of the MIPS estimator

(described as G-MIPS in Appendix A.4). Here, we use a similar setup to Saito and

Joachims [2022] (albeit without action embeddings E) where the d-dimensional context

vectors x are sampled from a standard normal distribution. Likewise, the action space
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(a) Results with varying n for –ú = 0.2 and m = 500

(b) Results with varying –ú for n = 500 and m = 1000

(c) Results with varying m for –ú = 0.6 and n = 500

Figure A.14: Results for Digits dataset. Note that compared to other datasets we consider
smaller maximum dataset sizes m, n here as the total number of available datapoints was 1797.

is finite and comprises of na actions, i.e. A = {0, . . . , na ≠ 1}, with na taking a range of

di�erent values. The reward function is defined as follows:

Reward function The expected reward q(x, a) := E[Y | x, a] for these experiments

is defined as follows:

q(x, a) = sin (a · ||x||2) .

The reward Y is obtained by adding a normal noise random variable to q(x, a)

Y = q(X, A) + ‘,

where ‘ ≥ N (0, 0.01). Here, it can be seen that conditional on R = (||X||2, A), the

reward Y does not depend on (X, A), i.e., the embedding R satisfies the conditional

independence assumption Y ‹‹ (X, A) | R.
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(a) Results with varying n for –ú = 0.4 and m = 2000

(b) Results with varying –ú for n = 100 and m = 2000

(c) Results with varying m for –ú = 0.4 and n = 100

Figure A.15: Results for CIFAR-100 dataset.

Behaviour and target policies We first define a behaviour policy by applying softmax

function to q(x, a) as

fib(a | x) = exp (q(x, a))
q

aÕœA exp (q(x, aÕ)) .

Just like in Section 2.5.1, to investigate the e�ect of increasing policy shift, we de-

fine a class of policies,

fi–ú(a|x) = –ú (a = arg max
aÕœA

q(x, aÕ)) + 1 ≠ –ú

|A|
where q(x, a) := E[Y | X = x, A = a],

where –ú
œ [0, 1] allows us to control the shift between fib and fiú. Again, the shift between

fib and fiú increases as –ú
æ 1. Using the ground truth behaviour policy fib, we generate a

dataset which is split into training and evaluation datasets of sizes m and n respectively.

In Figures A.16 - A.19, we present the results for this experimental setup for di�erent

choices of paramater configurations.
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(a) d = 1000, na = 100, –ú = 0.4.

(b) d = 10000, na = 100, –ú = 0.4.

Figure A.16: Results with varying size of evaluation dataset n.

(a) d = 1000, na = 100, n = 100.

(b) d = 10000, na = 100, n = 100.

Figure A.17: Results with varying –ú.

Estimation of behaviour policy ‚fib and marginal ratio ŵ(y) For the MR estimator,

we estimate the behaviour policy using a random forest classifier trained on 50% of the

training data and use the rest of the training data to estimate the marginal ratios ŵ(y) using

multi-layer perceptrons (MLP). Moreover, for a fair comparison we use a di�erent behaviour

policy estimate ‚fib for all other baselines which is trained on the entire training data.
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(a) na = 100, n = 100, –ú = 0.4.

(b) na = 500, n = 100, –ú = 0.4.

Figure A.18: Results with varying context dimensions d.

(a) d = 100, n = 100, –ú = 0.2.

(b) d = 100, n = 100, –ú = 0.4.

Figure A.19: Results with varying number of actions na.

Additional Baselines In addition to the baselines considered in the main text (Section

2.5.1), we also consider Switch-DR [Wang et al., 2017b] and DR with Optimistic Shrinkage

(DRos) [Su et al., 2020]. In addition, we also include the results for MR estimated using

the alternative method (‘MR (alt)’) outlined in Section A.6.1. For the G-MIPS estimator
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(defined in Appendix A.4) considered here, we use R = (a, ||x||2)2. To estimate q̂(x, a)

for DM and DR estimators, we use multi-layer perceptrons (MLPs).

Results

For this experiment, the results are computed over 10 di�erent sets of logged data replicated

with di�erent seeds, and in Figures A.16 - A.19 we use a total of m = 5000 training data.

Varying n Figure A.16 shows that MR outperforms the other baselines, in terms of MSE

and squared bias, when the number of evaluation data n Æ 1000. Additionally, we observe

that in this experiment, MR esitmated using alternative methods, MR (alt), yields better

results than the original method of estimating MR. Moreover, while the variance of DM is

lower than that of MR, the DM method has a high bias and consequently a high MSE.

Varying –ú Figure A.17 shows the results with increasing policy shift. It can be seen

that overall MR methods achieve the smallest MSE with increasing policy shift. Moreover,

the di�erence between MSE and variance of MR and IPW/DR methods increases with

increasing policy shift, showing that MR performs especially better than these baselines

when the di�erence between behaviour and target policies is large.

Varying d and na Figures A.18 and A.19 show that MR outperforms the other baselines

as the context dimensions and/or number of actions increase. In fact, Figure A.19 shows

that MR is significantly robust to increasing action space, whereas baselines like IPW

and DR perform poorly in large action spaces.

Varying m Figure A.20 shows the results with increasing number of training data m.

We again observe that the MR methods ‘MR’ and ‘MR (alt)’ outperforms the other

baselines in terms of the MSE and squared bias even when the number of training data

is low. Moreover, the variance of both the MR estimators continues to improve with

increasing number of training data.

Unlike our experimental results in Section A.6.2, ‘MR (alt)’ performs better than

the original MR estimator overall. This shows that one of these two methods is not
2It is easy to see that in our setup, the embedding R = (a, ||x||2) satisfies the conditional independence

assumption Y ‹‹ (X, A) | R needed for G-MIPS estimator to be unbiased
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better than the other consistently in all cases, and their relative performance depends

on the dataset under consideration.

(a) d = 5000, n = 100, na = 10, –ú = 0.2.

(b) d = 5000, n = 100, na = 10, –ú = 0.4.

Figure A.20: Results with varying number of training data m.

A.6.6 Self-normalised MR estimator

Self-normalization trick has been used in practice to reduce the variance in o�-policy estima-

tors [Swaminathan and Joachims, 2015b]. This technique is also applicable to the MR esti-

mator, and leads to the self-normalized MR estimator (denoted as ◊SNMR) defined as follows:

◊SNMR :=
nÿ

i=1

w(Yi)qn
j=1 w(Yj)

Yi.

We conducted experiments to investigate the e�ect of self-normalisation on the perfor-

mance of the IPW, DR and MR estimators. Figure A.21 shows results for three di�erent

choices of parameter configurations. Overall, we observe that in all settings, the MR

and self-normalised MR (SNMR) estimator outperform all other baselines including the

self-normalised IPW and DR estimators (denoted as SNIPW and SNDR respectively).

Moreover, in some settings, where the importance ratios achieve very high values, self-

normalisation can reduce the variance and MSE of the corresponding estimator (for

example, Figure A.21b). However, we also observe cases in which self-normalization

does not significantly change the results (Figure A.21a), or may even slightly worsen

the MSE of the estimators (Figure A.21c).
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(a) d = 10000, n = 200, na = 20, m = 5000.

(b) d = 5000, n = 200, na = 20, m = 1000.

(c) d = 10000, n = 200, na = 20, m = 5000.

Figure A.21: Results for self-normalised estimators with varying target policy shift –ú for
synthetic data setup considered in Section 2.5.1. Here, “SN” denotes self-normalised estimators.



A. Marginal Density Ratio for O�-Policy Evaluation in Contextual Bandits 134

T
ab

le
A

.1
:

M
ea

n-
sq

ua
re

d
er

ro
r

re
su

lts
w

ith
2

st
an

da
rd

er
ro

rs
fo

r
sy

nt
he

tic
da

ta
se

tu
p

co
ns

id
er

ed
in

Se
ct

io
n

2.
5.

1
w

ith
d

=
50

00
,n

a
=

50
,

–
ú

=
0.

8.
W

e
us

e
a

fix
ed

bu
dg

et
of

da
ta

po
in

ts
(d

en
ot

ed
by

N
)f

or
ea

ch
ba

se
lin

e
an

d
in

th
e

ca
se

of
M

R
we

us
e

m
=

20
00

of
th

e
av

ai
la

bl
e

da
ta

po
in

ts
to

es
tim

at
e

ŵ
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B.1 Proofs

B.1.1 Proof of Proposition 3.4.1

This proof is a direct adaptation of [Tibshirani et al., 2019, Lemma 3], and has only

been included for the sake of completeness.

In this proof, we use the notion of weighted exchangeability as defined in Section

3.2 of Tibshirani et al. [2019].



B. Conformal O�-Policy Prediction in Contextual Bandits 136

Definition B.1.1 (Weighted exchangeability)
Random variables V1, . . . , Vn are said to be weighted exchangeable with weight functions

w1, . . . , wn, if the density f of their joint distribution can be factorized as

f(v1, . . . , vn) =
nŸ

i=1
wi(vi)g(v1, . . . , vn) (B.1)

where g is any function that does not depend on the ordering of its inputs, i.e.

g(v‡(1), . . . , v‡(n)) = g(v1, . . . , vn) for any permutation ‡ of 1, . . . , n.

Lemma B.1.1

Let Zi = (Xi, Yi) œ Rd
◊ R, i = 1, ..., n + 1, be such that {(Xi, Yi)}n

i=1
i.i.d.
≥ P fib

X,Y and

(Xn+1, Yn+1) ≥ P fiú
X,Y . Then Z1, . . . , Zn+1 are weighted exchangeable with weights wi © 1,

i Æ n and wn+1(X, Y ) = dP fiú
X,Y /dP fib

X,Y (X, Y ).

Proof. The proof below is merely a verification that our proposed weights still retain the

coverage guarantees and is mainly taken from Tibshirani et al. [2019]. Hence, we follow the

same strategy as in Tibshirani et al. [2019], with the exception that we have the weights

as in Lemma B.1.1, hence inducing a lot of simplifications. As in Tibshirani et al. [2019],

we assume for simplicity that V1, . . . , Vn+1 are distinct almost surely, however the result

holds in general case as well. We define f as the joint distribution of the random variables

{Xi, Yi}
n+1
i=1 . We also denote Ez as the event of {Z1, . . . , Zn+1} = {z1, . . . , zn+1} and let

vi = s(zi) = s(xi, yi), then for each i:

{Vn+1 = vi|Ez} = {Zn+1 = zi|Ez} =
q

‡:‡(n+1)=i f(z‡(1), . . . , z‡(n+1))
q

‡ f(z‡(1), . . . , z‡(n+1))
(B.2)

Now using the fact that Z1, . . . , Zn+1 are weighted exchangeable:

q
‡:‡(n+1)=i f(z‡(1), . . . , z‡(n+1))

q
‡ f(z‡(1), . . . , z‡(n+1))

=
q

‡:‡(n+1)=i
rn+1

j=1 wj(z‡(j))g(z‡(1), . . . , z‡(n+1))
q

‡
rn+1

j=1 wj(z‡(j))g(z‡(1), . . . , z‡(n+1))
(B.3)

= wn+1(zi)g(z1, . . . , zn+1)qn+1
j=1 wn+1(zj)g(z1, . . . , zn+1)

= pw
i (zn+1)

where we recall that

pw
i (x, y) := w(Xi, Yi)qn

j=1 w(Xj, Yj) + w(x, y) .
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We get simplifications in (B.3) due to the weights defined in Lemma B.1.1, i.e. wi © 1

for i Æ n and wn+1(x, y) = w(x, y) = dP fiú
X,Y /dP fib

X,Y (x, y). Next, just as in Tibshirani et al.

[2019] we can view:

Vn+1 = vi|Ez ≥

n+1ÿ

i=1
pw

i (zn+1)”vi (B.4)

which implies that:

{Vn+1 Æ Quantile—(
n+1ÿ

i=1
pw

i (zn+1)”vi)|Ez} Ø —.

This is equivalent to

{Vn+1 Æ Quantile—(
n+1ÿ

i=1
pw

i (Zn+1)”vi)|Ez} Ø —

and, after marginalizing, one has

{Vn+1 Æ Quantile—(
n+1ÿ

i=1
pw

i (Zn+1)”vi)} Ø —

This is equivalent to the claim in Proposition 3.4.1.

B.1.2 Proof of Proposition 3.4.2

The following proof is an adaptation of [Lei and Candès, 2021, Proposition 1] to our setting.

Before detailing the main proof, we introduce a preliminary result which will be

used in the proof of Proposition 3.4.2.

Lemma B.1.2
Let ŵ(x, y) be an estimate of the weights w(x, y) = dP fiú

X,Y /dP fib

X,Y (x, y), and

(E(X,Y )≥P fib
X,Y

[ŵ(X, Y )r])1/r
Æ Mr < Œ

for some r Ø 2. Let (Xi, Yi) i.i.d.
≥ P fib

X,Y and A denote the event that

nÿ

i=1
ŵ(Xi, Yi) Æ n/2.

Then,

P(A) Æ
c1M2

r

n

where c1 is an absolute constant, and the probability is taken over {Xi, Yi}
n
i=1

i.i.d.
≥ P fib

X,Y .
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Proof of Lemma B.1.2

The condition E(X,Y )≥P fib
X,Y

[ŵ(X, Y )r] < Œ =∆ P(X,Y )≥P fib
X,Y

(ŵ(X, Y ) < Œ) = 1 and

E(X,Y )≥P fib
X,Y

[ŵ(X, Y )] < Œ. WLOG assume E(X,Y )≥P fib
X,Y

[ŵ(X, Y )] = 1. Recall that

pŵ
i (x, y) := ŵ(Xi,Yi)qn

i=1
ŵ(Xi,Yi)+ŵ(x,y) , and therefore, pŵ

i (x, y) are invariant to weight scaling. Since

E(Xi,Yi)≥P fib
X,Y

[ŵ(Xi, Yi)]2 Æ M2
r and E(Xi,Yi)≥P fib

X,Y
(ŵ(Xi, Yi)) = 1, using Chebyshev’s inequal-

ity

P
A

nÿ

i=1
ŵ(Xi, Yi) Æ n/2

B

=P
A

nÿ

i=1
(ŵ(Xi, Yi) ≠ 1) Æ ≠n/2

B

ÆP
A

|

nÿ

i=1
(ŵ(Xi, Yi) ≠ 1)| Ø n/2

B

Æ
4
n2E

S

U
A

nÿ

i=1
ŵ(Xi, Yi) ≠ E[ŵ(Xi, Yi)]

B2 T

V

= 4
n2

Ó
nE|ŵ(X1, Y1) ≠ E[ŵ(X1, Y1)]|2

Ô
(B.5)

Æ
16
n2 nE|ŵ(X1, Y1)|2 (B.6)

Æ
c1M2

r

n

where to get from (B.5) to (B.6) we use:

E|ŵ(X1, Y1) ≠ E[ŵ(X1, Y1)]|2 Æ 2E
Ë
ŵ(X1, Y1)2 + E[ŵ(X1, Y1)]2

È

Æ 4E[ŵ(X1, Y1)2].

We can now prove Proposition 3.4.2.

Proof. The condition E(X,Y )≥P fib
X,Y

[ŵ(X, Y )r] < Œ =∆ P(X,Y )≥P fib
X,Y

(ŵ(X, Y ) < Œ) = 1

and E(X,Y )≥P fib
X,Y

[ŵ(X, Y )] < Œ. WLOG assume E(X,Y )≥P fib
X,Y

[ŵ(X, Y )] = 1. Let P̃ fiú
X,Y be a

probability measure with

dP̃ fiú

X,Y (x, y) := ŵ(x, y)dP fib

X,Y (x, y)

and (X̃, Ỹ ) ≥ P̃ fiú
X,Y that is independent of the data. By Hölder’s inequality,

E(X̃,Ỹ )≥P̃ fiú
X,Y

[ŵ(X̃, Ỹ )] =
⁄

x̃,ỹ

dP̃ fiú(x̃, ỹ)
dP fib(x̃, ỹ)dP̃ fiú(x̃, ỹ)

=E(X,Y )≥P fib
X,Y

[ŵ(X, Y )2] Æ M2
r < Œ
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Note using Proposition 3.4.1 with (X̃, Ỹ ) denoting (Xn+1, Yn+1) for simplicity

P(Ỹ œ Ĉ(X̃, Ỹ ))

= E(X̃,Ỹ )≥P fiú
X,Y

C

P
A

s(X̃, Ỹ ) Æ Quantile1≠–

A
nÿ

i=1
pŵ

i (X̃, Ỹ )”Vi + pŵ
n+1(X̃, Ỹ )”Œ

B

| E(Ṽ )
BD

(B.7)

where E(Ṽ ) denotes the unordered set of V1, . . . , Vn+1. Marginalising over {(Xi, Yi)}n
i=1, we

obtain

(B.7) Æ E
A

1 ≠ – + max
iœ[n+1]

pŵ
i (X̃, Ỹ )

B

(B.8)

where the expectation is over {(Xi, Yi)}n
i=1

i.i.d.
≥ P fib

X,Y and (X̃, Ỹ ) ≥ P̃ fiú
X,Y . Let A denote the

event that
nÿ

i=1
ŵ(Xi, Yi) Æ n/2.

using Lemma B.1.2 and E[ŵ(X̃, Ỹ )] Æ M2
r , we get that

E
C

max
iœ[n+1]

pŵ
i (X̃, Ỹ )

D

=E
C

max{ŵ(X̃, Ỹ ), maxi ŵ(Xi, Yi)}
ŵ(X̃, Ỹ ) + qn

i=1 ŵ(Xi, Yi)

D

ÆE
C

max{ŵ(X̃, Ỹ ), maxi ŵ(Xi, Yi)}
ŵ(X̃, Ỹ ) + qn

i=1 ŵ(Xi, Yi)
AC

D

+ P(A)

ÆE
C

2 max{ŵ(X̃, Ỹ ), maxi ŵ(Xi, Yi)}
n AC

D

+ c1M2
r

n

Æ
2
n

3
E[ŵ(X̃, Ỹ )] + Emax

i
ŵ(Xi, Yi)

4
+ c1M2

r

n

Æ
2
n

Q

aE[ŵ(X̃, Ỹ )] +
A

nÿ

i=1
E[ŵ(Xi, Yi)r]

B1/r
R

b + c1M2
r

n

Æ
2
n

1
M2

r + n1/rMr

2
+ c1M2

r

n
.

This implies that

P(X,Y )≥P̃ fiú
X,Y

(Y œ Ĉ(X)) Æ 1 ≠ – + cn1/r≠1

for some constant c that only depends on Mr and r. Note that

|P(X,Y )≥P̃ fiú
X,Y

(Y œ Ĉ(X)) ≠ P(X,Y )≥P fiú
X,Y

(Y œ Ĉ(X))| Æ dTV(P̃ fiú
, P fiú) (B.9)

where dTV is the total variation norm which satisfies

dTV(P̃ fiú
, P fiú) =1

2

⁄
|ŵ(x, y)dP fib(x, y) ≠ dP fiú(x, y)|

=1
2

⁄
|ŵ(x, y)dP fib(x, y) ≠ w(x, y)dP fib(x, y)|

=1
2E(X,Y )≥P fib

X,Y
[|ŵ(X, Y ) ≠ w(X, Y )|] = �w. (B.10)
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Putting together (B.9) and (B.10), we get

P(X,Y )≥P fiú
X,Y

(Y œ Ĉ(X)) Æ 1 ≠ – + �w + cn1/r≠1. (B.11)

For the lower bound, using Proposition 3.4.1 we get that

P(X̃,Ỹ )≥P̃ fiú
X,Y

(Ỹ œ Ĉ(X̃, Ỹ )) =P
A

s(X̃, Ỹ ) Æ Quantile1≠–

A
nÿ

i=1
pŵ

i (X̃, Ỹ )”Vi + pŵ
n+1(X̃, Ỹ )”Œ

BB

Ø 1 ≠ –. (B.12)

Using (B.9) we thus obtain

P(X,Y )≥P fiú
X,Y

(Y œ Ĉ(X)) ØP(X,Y )≥P̃ fiú
X,Y

(Y œ Ĉ(X)) ≠ dT V (P̃ fiú
, P fiú)

Ø1 ≠ – ≠ �w. (B.13)

B.1.3 Proof of Proposition 3.4.3

For notational convenience, we suppress the subscripts m and n in q̂, ŵ, Ĉ. Moreover, we use

ŵi to denote ŵ(Xi, Yi) and ÷(x, y) to denote Quantile1≠–(qn
i=1 p̂i(x, y)”Vi + p̂n+1(x, y)”Œ).

Proof. We use (X̃, Ỹ ) ≥ P fiú
X,Y in place of (Xn+1, Yn+1) and let ‘ < r/2. By the definition

of Ĉ(X̃), we directly have

P(Ỹ œ Ĉ(X̃) | X̃) =P(s(X̃, Ỹ ) Æ ÷(X̃, Ỹ ) | X̃)

ØP(sú(X̃, Ỹ ) Æ ÷(X̃, Ỹ ) ≠ H(X̃) | X̃) (B.14)

where sú(X̃, Ỹ ) := max{Ỹ ≠ q–hi
(X̃), q–lo

(X̃) ≠ Ỹ } and the probability is taken over
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{(Xi, Yi)}n
i=1

i.i.d.
≥ P fib

X,Y and Ỹ ≥ P fiú

Y |X=X̃
. We then get

(B.14) ØP(sú(X̃, Ỹ ) Æ ≠‘ ≠ H(X̃) | X̃) ≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃)

ØP(sú(X̃, Ỹ ) Æ ≠‘ ≠ H(X̃) | X̃)
1

(H(X̃) Æ ‘) + (H(X̃) > ‘)
2

≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃)
(B.15)

Ø

1
P(sú(X̃, Ỹ ) Æ 0 | X̃) ≠ b2{‘ + H(X̃)}

2
(H(X̃) Æ ‘)

+ P(sú(X̃, Ỹ ) Æ ≠‘ ≠ H(X̃) | X̃) (H(X̃) > ‘) ≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃) (B.16)

ØP(sú(X̃, Ỹ ) Æ 0 | X̃) (H(X̃) Æ ‘) ≠ b2{‘ + H(X̃) (H(X̃) Æ ‘)}

+
1
P(sú(X̃, Ỹ ) Æ 0 | X̃) ≠ P(sú(X̃, Ỹ ) œ (≠‘ ≠ H(X̃), 0))

2
(H(X̃) > ‘)

≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃)

ØP(sú(X̃, Ỹ ) Æ 0 | X̃) ≠ b2{‘ + H(X̃) (H(X̃) Æ ‘)} ≠ (H(X̃) > ‘)

≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃) (B.17)

where, to get from (B.15) to (B.16), we use the condition 2‘ < r and Assumption 2

(B.17) ØP(sú(X̃, Ỹ ) Æ 0 | X̃) ≠ b2{‘ + H(X̃)} ≠ (H(X̃) > ‘) ≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃)
(B.18)

=1 ≠ – ≠ b2{‘ + H(X̃)} ≠ (H(X̃) > ‘) ≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃). (B.19)

Next, we derive an upper bound on P(÷(X̃, Ỹ ) < ≠‘ | X̃). Let G denote the CDF of

the random distribution qn
i=1 p̂i(x, y)”Vi + p̂n+1(x, y)”Œ. Then, ÷(X̃, Ỹ ) < ≠‘ implies

G(≠‘) Ø 1 ≠ – and thus P(÷(X̃, Ỹ ) < ≠‘ | X̃) Æ P(G(≠‘) Ø 1 ≠ – | X̃) a.s. Moreover, we

have

P(G(≠‘) Ø 1 ≠ – | X̃) =P
A qn

i=1 ŵi (Vi Æ ≠‘)
qn

i=1 ŵi + ŵ(X̃, Ỹ )
Ø 1 ≠ – | X̃

B

ÆP
Aqn

i=1 ŵi (Vi Æ ≠‘)
qn

i=1 ŵi
Ø 1 ≠ – | X̃

B

(B.20)

=P
Aqn

i=1 ŵi (Vi Æ ≠‘)
qn

i=1 ŵi
Ø 1 ≠ –

B

(B.21)

where, to get from (B.20) to (B.21) we use the independence of {(Xi, Yi)}n
i=1 and X̃. Now

we observe that
qn

i=1 ŵi (Vi Æ ≠‘)
n

=
qn

i=1(ŵi ≠ wi) (Vi Æ ≠‘)
n

+
qn

i=1 wi (Vi Æ ≠‘)
n

.
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As n æ Œ, the strong law of large numbers yields
-----

qn
i=1(ŵi ≠ wi) (Vi Æ ≠‘)

n

-----
a.s.
≠æ

----E(X,Y )≥P fib
X,Y

[(ŵ(X, Y ) ≠ w(X, Y )) (s(X, Y ) Æ ≠‘)]
----

Æ E(X,Y )≥P fib
X,Y

[|ŵ(X, Y ) ≠ w(X, Y )| (s(X, Y ) Æ ≠‘)]

Æ E(X,Y )≥P fib
X,Y

[|ŵ(X, Y ) ≠ w(X, Y )|] mæŒ
≠æ 0 (B.22)

from Assumption 1 and
qn

i=1 wi (Vi Æ ≠‘)
n

a.s.
≠æ E(X,Y )≥P fib

X,Y
[w(X, Y ) (s(X, Y ) Æ ≠‘)] = P(X,Y )≥P fiú

X,Y
(s(X, Y ) Æ ≠‘).

(B.23)

Using the triangle inequality,

P(X,Y )≥P fiú
X,Y

(s(X, Y ) Æ ≠‘) Æ P(X,Y )≥P fiú
X,Y

(sú(X, Y ) Æ ≠‘/2) + P(H(X) Ø ‘/2) (B.24)

Æ P(X,Y )≥P fiú
X,Y

(sú(X, Y ) Æ 0) ≠ ‘b1/2 + 2kE[Hk(X)]/‘k

(B.25)
= 1 ≠ – ≠ ‘b1/2 + 2kE[Hk(X)]/‘k mæŒ

≠æ 1 ≠ – ≠ ‘b1/2.

To get from (B.24) to (B.25), we use Assumption 2 and Markov’s inequality. Similarly, we

have

qn
i=1 ŵi

n
=

qn
i=1(ŵi ≠ wi)

n
+

qn
i=1 wi

n

so, as n æ Œ,
-----

qn
i=1(ŵi ≠ wi)

n

-----
a.s.
≠æ

----E(X,Y )≥P fib
X,Y

[(ŵ(X, Y ) ≠ w(X, Y ))]
----

Æ E(X,Y )≥P fib
X,Y

[|ŵ(X, Y ) ≠ w(X, Y )|] mæŒ
≠æ 0, (B.26)

and
qn

i=1 wi

n
a.s.
≠æ E(X,Y )≥P fib

X,Y
[w(X, Y )] = 1. (B.27)

Putting this all together using the continuous mapping theorem, we get that, almost

surely,

lim
mæŒ

lim
næŒ

qn
i=1 ŵi (Vi Æ ≠‘)

qn
i=1 ŵi

= lim
mæŒ

lim
næŒ

qn
i=1 ŵi (Vi Æ ≠‘)/n

qn
i=1 ŵi/n

= 1 ≠ – ≠ ‘b1/2. (B.28)
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Since convergence almost surely implies convergence in probability, we have

lim
mæŒ

lim
næŒ

P
Aqn

i=1 ŵi (Vi Æ ≠‘)
qn

i=1 ŵi
Ø 1 ≠ –

B

= 0. (B.29)

This implies that, for any ‘ > 0, limmæŒ limnæŒ P(÷(X̃, Ỹ ) < ≠‘ | X̃) = 0 almost surely.

Using Markov’s inequality and Assumption 3

P(H(X) > ‘) Æ E[Hk(X)]/‘k mæŒ
≠æ 0. (B.30)

So as m æ Œ, H(X) P
æ 0. Similarly, (H(X) > ‘) P

æ 0 as m æ Œ.

Recall (using B.19) that, for any ‘ œ (0, r/2), almost surely,

P(Ỹ œ Ĉ(X̃) | X̃) ≠ (1 ≠ – ≠ b2‘) Ø ≠b2H(X̃) ≠ (H(X̃) > ‘) ≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃).
(B.31)

For given t > 0, pick ‘ < min(r/2, t/2b2). Then,

P(Ỹ œ Ĉ(X̃) | X̃) ≠ (1 ≠ – ≠ t/2) Ø ≠b2H(X̃) ≠ (H(X̃) > ‘) ≠ P(÷(X̃, Ỹ ) < ≠‘ | X̃).
(B.32)

Each term on the right hand side of (B.32) converges in probability to 0 as m, n æ Œ,

and therefore using continuous mapping theorem

b2H(X̃) + (H(X̃) > ‘) + P(÷(X̃, Ỹ ) < ≠‘ | X̃) P
æ 0.

This implies

P(P(Ỹ œ Ĉ(X̃) | X̃) Æ 1 ≠ – ≠ t)

Æ P(b2H(X̃) + (H(X̃) > ‘) + P(÷(X̃, Ỹ ) < ≠‘ | X̃) Ø t/2) æ 0.

Therefore,

lim
mæŒ

lim
næŒ

P(P(Ỹ œ Ĉ(X̃) | X̃) Æ 1 ≠ – ≠ t) = 0. (B.33)
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B.2 Conformal O�-Policy Prediction (COPP)

B.2.1 Further comments on the di�erences between Lei and
Candès [2021] and COPP

In this subsection, we elaborate on the di�erences between our work and Lei and Candès

[2021].

Firstly, Lei and Candès [2021] consider a setup in which the distribution of X is shifted,

and construct intervals on the outcome under a specific (deterministic) action, i.e. Y (a). In

contrast, we consider a setup in which the distribution of Y |X is shifted due to a change in

the policy which is non trivial, and construct bounds on the outcome under this new policy

(which could be stochastic). Additionally, since the theory in our methodology relies on

the ratio of the joint distribution PX,Y , our framework can be straightforwardly extended

to the case where both, the conditional PY |X and the covariate distribution PX shift.

Secondly, as already mentioned in section 3.5, Lei and Candès [2021] can only be applied

to the case where we have a deterministic target policy and a discrete action space, whereas

COPP generalizes to the stochastic policy and continuous action space. This limitation

of Lei and Candès [2021] can be partially addressed by employing the “union method” as

described in the main text, which consists of constructing CP intervals for each action

separately before taking the union of the intervals. However, we showed in our experiments

that this leads to overly conservative intervals i.e. coverage above the required 1 ≠ – in

Table 3.1a. This is because the predictive interval does not depend on the target policy,

since every action is treated identically when taking the union. This approach is moreover

unsuitable for continuous action spaces, whereas COPP applies without modification.

Thirdly, as stated in in section 3.5, even in the case when we only consider deterministic

target policies, there is an important methodological di�erence between COPP and Lei

and Candès [2021]. Lei and Candès [2021] construct the intervals on Y (a) by only using

calibration data with A = a (see eq. 3.4 in Lei and Candès [2021]). In contrast, it can

be shown that COPP uses the entire calibration data when constructing intervals on

Y (a). This is a consequence of integrating out the actions in the weights w(x, y) (sec

3.3.1). This empirically leads to smaller variance in coverage compared to Lei and Candès

[2021] as evidenced by the experimental results in B.2.2.
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Figure B.1: Results for synthetic data experiment with fib = fi0.3 and deterministic target
policies.

Finally, in our paper we are not interested in a linear combination of the Y (a) as in

Lei and Candès [2021], who consider the linear combination of the form Y (1) ≠ Y (0).

Instead, as described in section 3.1.1, we are interested in the outcome Y under the

new target policy fiú (sometimes denoted as Y (fiú) in the literature), which cannot be

expressed as a linear combination of Y (a). As a result, there does not appear to be a

straightforward application of [Lei and Candès, 2021, Section 4.3] to our setup which

relies on the linear combination assumption to be applicable.

B.2.2 Comparison with Lei and Candès [2021] on deterministic
target policies.

In order to further clarify the distinction between COPP and Lei and Candès [2021], we

conducted additional experiments when the target policy is deterministic i.e. fiú(A|X) =

{A = a}. In the main text we modified Lei and Candès [2021] to our setting of

stochastic policies by constructing the conformal intervals through the union of the CP

sets across the actions. Here we aim to apply COPP to the setting of Lei and Candès

[2021], i.e. deterministic target policy.
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As mentioned in in the main text, given that we are integrating out the action in Eq.

3.7, we are essentially able to use the full dataset when constructing the CP intervals.

To see this explicitly, consider the case where Y | X, A is a normal random variable (as

in our toy experiment). In this case, it can be straightforwardly shown that the weights

w(xi, yi) will be non-zero, and therefore, when constructing the COPP intervals using

(3.5), we are able to use all the calibration datapoints.

This is contrary to Lei and Candès [2021], who only consider calibration data with

A = a, when constructing the CP intervals for Y (a). Below, we use the same experimental

setup as our toy experiment in section 3.6.1 (see section B.4.1 for more details) with the

di�erence here that we now consider deterministic target policies. In figure B.1 we plot the

coverage for given deterministic target policies against the number of calibration datapoints.

In this figure, we refer to the methodology of Lei and Candès [2021] as LC21. Here, we

use the behavioural policy fi0.3 and a deterministic target policy which takes a single fixed

action a œ {1, 2, 3, 4} at test time. In the title of each subfigure, Y (a) corresponds to

the outcome for the target policy fiú(A = a | X) = (A = a).

Results: We first note in Figure B.1 that the coverage of COPP intervals has a lower

variance than Lei and Candès [2021]. Given that COPP is able to use all the data when

constructing the CP intervals, as opposed to Lei and Candès [2021] which only uses a

subset, our bounds have lower variance while also attaining the coverage guarantees. We

observe this di�erence particularly in the case when we have little calibration data. Given

that Lei and Candès [2021] have to split the data into 4 di�erent splits (we have 4 di�erent

actions), the calibration data for each action is relatively small, whereas we are able to

use the whole dataset to construct our CP intervals.

B.2.3 Motivation of using stochastic policies for bandits

One of the key di�erence between our method and that of Lei and Candès [2021] is that

our method can be applied to the setting where the target policy is stochastic. In many

settings, deterministic target policies might not be applicable such as in the settings of

recommendation systems or RL where exploration is needed [Swaminathan et al., 2017a,

Su et al., 2020]. For example, COPP can be used to compare di�erent recommendation

systems given some logged data. We explore this application in our MSR experiments
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where the target policies correspond to di�erent recommendation systems which are, by

default, stochastic. Other applications which also make use of stochastic policies bandit

problems can be found in Su et al. [2020], Farajtabar et al. [2018a].

B.2.4 COPP for Group-balanced coverage

As Angelopoulos and Bates [2021] point out, we may want predictive intervals that

have same error rates across multiple di�erent groups. Using our example of a recom-

mendation system, we may want the predictive intervals to have same coverage across

male and female users.

Formally, this problem can be expressed as follows. Let � = {�1, · · · , �k} be subsets

of X ◊ Y with P(X,Y )≥P fiú
X,Y

((X, Y ) œ �j) > 0 for j œ {1, . . . , k}. We would like to

construct predictive intervals Ĉ�
n which satisfy

P(X,Y )≥P fiú
X,Y

(Y œ Ĉ�
n (X) | (X, Y ) œ �j) Ø 1 ≠ – for all j œ {1, . . . , k}.

CP o�ers us the ability to construct such intervals Ĉ�
n , by simply running algorithm 1

(main text) on each group separately. This has been visualized in figure B.2.

Figure B.2: Figure taken from Angelopoulos and Bates [2021]. To achieve group-balanced
coverage, we simply run conformal prediction separately on each group.

Formally, this procedure can be described as follows. We group scores into di�erent

groups according to each subset.

{(X�j

i , Y
�j

i )}nj

i=1 := {(Xi, Yi) : (Xi, Yi) œ �j}
n
i=1 and,

V
�j

i := (X�j

i , Y
�j

i )

Then, within each subset, we calculate the conformal quantile,

÷�j (x, y) := Quantile1≠–(F̂ �j
n (x, y))
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where,

F̂ �j
n (x, y) :=

njÿ

i=1
p

�j

i (x, y)”
V

�j
i

+ p
�j
n+1(x, y)”Œ where,

p
�j

i (x, y) := w(X�j

i , Y
�j

i )
qnj

i=1 w(X�j

i , Y
�j

i ) + w(x, y)

p
�j
n+1(x, y) := w(x, y)

qnj

i=1 w(X�j

i , Y
�j

i ) + w(x, y)

Next, we construct the set Ĉ�
n as follows:

Ĉ�
n (xtest) :=

k€

j=1
Ĉ�j

n (xtest) where,

Ĉ�j
n (xtest) := {y : (xtest, y) œ �j and s(xtest, y) Æ ÷�j (xtest, y)}.

(B.34)

Proposition B.2.1 (Coverage guarantee for class-balanced conformal prediction)
Let � = {�1, · · · , �k} be subsets of X ◊ Y with P(X,Y )≥P fiú

X,Y
((X, Y ) œ �j) > 0 for

j œ {1, . . . , k}. Then, the set Ĉ�
n defined above satisfies the coverage guarantee

P(X,Y )≥P fiú
X,Y

(Y œ Ĉ�
n (X) | (X, Y ) œ �j) Ø 1 ≠ – for all j œ {1, . . . , k}.

Proof of Proposition B.2.1

P(X,Y )≥P fiú
X,Y

(Y œ Ĉ�
n (X) | (X, Y ) œ �j)

Ø P(X,Y )≥P fiú
X,Y

(Y œ Ĉ�j
n (X) | (X, Y ) œ �j)

Ø P(X,Y )≥P fiú
X,Y

((X, Y ) œ �j : s(X, Y ) Æ ÷�j (X, Y ) | (X, Y ) œ �j) (B.35)

Define the measure P j
X,Y by restricting P fiú

X,Y to �j, i.e.

P j
X,Y (x, y) Ã P fiú

X,Y (x, y) ((x, y) œ �j)

Then, (B.35) can be written as

(B.35) =P(X,Y )≥P j
X,Y

(s(X, Y ) Æ ÷�j (X, Y )) (B.36)
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Moreover, for (x, y) œ �j we have

w(x, y) =
P fiú

X,Y (x, y)
P fib

X,Y (x, y)
Ã

P j
X,Y (x, y)

P fib

X,Y (x, y)

Since p
�j

i (x, y) is invariant to scaling of weights w(x, y), replacing the weights by w̃(x, y) =
P j

X,Y (x,y)
P fib

X,Y (x,y)
keeps the conformal sets unchanged.

Therefore, using Proposition 3.4.1, the conformal sets constructed will provide coverage

guarantees under the measure P j
X,Y , i.e.

P(X,Y )≥P j
X,Y

(s(X, Y ) Æ ÷�j (X, Y )) Ø 1 ≠ –

Using (B.36), we get that

P(X,Y )≥P fiú
X,Y

(Y œ Ĉ�
n (X) | (X, Y ) œ �j) Ø P(X,Y )≥P j

X,Y
(s(X, Y ) Æ ÷�j (X, Y )) Ø 1 ≠ –

COPP for class-balanced coverage

Algorithm 2: COPP for class-balanced coverage
Inputs: Observational data Dobs = {Xi, Ai, Yi}

nobs
i=1 , conf. level –, a score function

s(x, y) œ R, new data point xtest, target policy fiú ;
Output: ĈY

n (xtest) with coverage guarantee (B.37);
Split Dobs into training data (Dtr) and calibration data (Dcal) of sizes m and n
respectively;

Use Dtr to estimate weights ŵ(·, ·);
for y œ Y do

Let {Xy
j , Y y

j }
ny

j=1 be the following subset of calibration data: {(Xi, Yi) : Yi = y};
Let V y

j := s(Xy
j , Y y

j ), for j = 1, . . . , ny;
Define F̂ x,y

n = qny

i=1 pw
i (x, y)”V y

i
+ pw

n+1(x, y)”Œ;
where, pw

i (x, y) := w(Xy
i ,Y y

i )qny
i=1

w(Xy
i ,Y y

i )+w(x,y) , pw
n+1(x, y):= w(x,y)qny

i=1
w(Xy

i ,Y y
i )+w(x,y) ;

÷(x, y) := Quantile1≠–(F̂ x,y
n )

end
Define ĈY

n (xtest) := {y : s(xtest, y) Æ ÷(xtest, y)};
Return ĈY

n (xtest)

In the case when Y is discrete, we construct predictive sets, ĈY

n (x), which o�er label

conditioned coverage guarantees using the methodology described above,

P(X,Y )≥P fiú
X,Y

(Y œ ĈY

n (X) | Y = y) Ø 1 ≠ –, for all y œ Y (B.37)
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This is a strictly stronger guarantee than marginal coverage, i.e. P(X,Y )≥P fiú
X,Y

(Y œ

Ĉn(X)) Ø 1 ≠ –. To understand what (B.37) means, consider our running example

of recommendation systems, where the outcome Y is whether the recommendation is

relevant (0) or not (1) to the user. Then, Eq. (B.37) ensures that out of the users who

received irrelevant recommendations, the predictive sets contain ‘not relevant’ (1) at least

100 · (1 ≠ –)% of the times. This can be thought of as controlling the false negative rate of

irrelevant recommendations at 100 · –%. The same is true for users who receive relevant

recommendations. This is particularly useful when data is imbalanced, for example, when

the majority of the users in observational receive relevant recommendations.

B.2.5 Weights estimation ŵ(x, y)
Consistent estimation of the weights does not imply consistent estimation of
P̂ (y|x, a)

In Proposition 3.4.1, we assume to have consistent estimator of w(x, y) which begs the

following question: In general, does a consistent estimate of w(x, y) imply that we also

obtain a consistent estimate of P (y|x, a)? In particular, one could then just use the

estimate of P̂ (y|x, a) to construct the predictive interval. However, we answer the above

question with the negative by supplying a counter-example.

Counter-example Let X œ [1, +Œ), a œ s.t. |a| < K for K œ >0.

Let Y |X, a ≥ N ((KX2 + a)0.5, (KX2
≠ a)).

We have [Y 2
|X, a] = V ar(Y |X, a)+ [Y |X, a]2 = KX2 +a+KX2

≠a = 2KX2 (inde-

pendent of a)

Next let

P̂ (y|x, a) := y2P (y|x, a)
2Kx2 . (B.38)

Recall that

w(x, y) =
s

P (y|x, a)fiú(a|x)da
s

P (y|x, a)fib(a|x)da
(B.39)
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Using the above definition of P̂ (y|x, a) we have:

ŵ(x, y) =
s

P̂ (y|x, a)fiú(a|x)da
s

P̂ (y|x, a)fib(a|x)da

=
s

P (y|x, a) Y 2

2KX2 fiú(a|x)da
s

P (y|x, a) Y 2

2KX2 fib(a|x)da

= w(x, y).

Hence, w(x, y) © ŵ(x, y) ”=∆ P̂ (y|x, a) © P (y|x, a).

More generally, if there exists a function � : X ◊ Y æ RØ0 such that

1. �(x, y) is not constant in y

2. 0 < E[�(X, Y ) | X, A] < Œ, and does not depend on A

Then, we can define P̃ (y|x, a) := P (y|x, a)�(x, y)/E[�(X, Y ) | X, A], and the weights

computed using P̃ (y|x, a) will be the equal to w(x, y) even though P̃ (y|x, a) ”= P (y|x, a).

Alternative ways to estimate ŵ(x, y) without estimating P̂ (y|x, a)

In this section, we show how we could estimate w(x, y) without having to estimate

P̂ (y|x, a). One way to obtain an estimate ŵ(x, y) is by taking a closer look at the definition

of w(x, y) and rewriting the ratio.

w(x, y) =
P fiú

X,Y (x, y)
P fib

X,Y (x, y)

=
⁄ P fiú

X,A,Y (x, a, y)
P fib

X,A,Y (x, a, y)
P fib

A|X,Y (a|x, y)da

=
⁄ fiú(a|x)

fib(a|x)P fib

A|X,Y (a|x, y)da

= E
A≥P fib

A|X=x,Y =y

5
fiú(A|x)
fib(A|x)

6
. (B.40)

Lemma B.2.1

Let w(x, y) = P fiú
X,Y (x,y)

P fib
X,Y (x,y)

, then

w(x, y) = arg min
f

E
X,A,Y ≥P fib

X,A,Y

5----

----
fiú(A|X)
fib(A|X) ≠ f(X, Y )

----

----
26

. (B.41)
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Proof of Lemma B.2.1 This follows directly from the identity (B.40). We prove

it here for sake of completeness.

E
X,A,Y ≥P fib

X,A,Y

5----

----
fiú(A|X)
fib(A|X) ≠ f(X, Y )

----

----
26

= E
X,Y ≥P fib

X,Y

5
E

A≥P fib
A|X,Y

----

----
fiú(A|X)
fib(A|X) ≠ f(X, Y )

----

----
26

= E
X,Y ≥P fib

X,Y

5
Var

A≥P fib
A|X,Y

5
fiú(A|X)
fib(A|X)

6
+

A

E
A≥P fib

A|X,Y

5
fiú(A|X)
fib(A|X)

6
≠ f(X, Y )

B2 6
. (B.42)

Where, (B.42) is minimized if f(x, y) = E
A≥P fib

A|X=x,Y =y

5
fiú(A|x)
fib(A|x)

6
= w(x, y).

Using Lemma B.2.1, we can thus approximate w(x, y) by minimizing the loss

ŵ(x, y) = arg min
f◊

E
X,A,Y ≥P fib

X,A,Y

5----

----
fiú(A|X)
fib(A|X) ≠ f◊(X, Y )

----

----
26

(B.43)

Hence we see that the ratio estimation problem can be rewritten as a regression problem

where f◊(x, y) is for example a neural network. This allows one to estimate directly,

without the need for estimating P̂ (y | x, a) first.
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B.3 Estimation of the quantiles of the target dis-
tribution

As mentioned in Section 3.4.2, we present here a way to estimate the quantiles of the

target distribution P fiú
X,Y consistently when the ground truth weight function w(x, y) is

known. As we are interested in the quantiles, we will be using the pinball loss to train

our model f̂◊ defined by

L–(◊, x, y) =

Y
]

[
–(f̂◊(x) ≠ y) if (f̂◊(x) ≠ y) > 0,

(1 ≠ –)(y ≠ f̂◊(x)) if (f̂◊(x) ≠ y) < 0.

Then we have the following objective to optimize:

E(X,Y )≥P fiú
X,Y

[L–(◊, X, Y )] =
⁄

X,Y
L–(◊, x, y)P fiú

X,Y (dx, dy)

=
⁄

X,Y
L–(◊, x, y)

dP fiú
X,Y (x, y)

dP fib

X,Y (x, y)
P fib

X,Y (dx, dy)

=
⁄

X,Y
L–(◊, x, y)w(x, y)P fib

X,Y (dx, dy)

= E(X,Y )≥P fib
X,Y

[L–(◊, X, Y )w(X, Y )].

The above holds true if the true weight function is known. However in the case where

we only have a consistent estimator of w(x, y), it remains to be proven that the above

objective will also yield a consistent estimator of the quantiles under fiú. We leave

this for future work to prove as we are simply providing a possible avenue to relax

the assumptions in Proposition 3.4.2.
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B.4 Experiments

The code for our experiments is available at https://anonymous.4open.science/r/

COPP-75F5 and we ran all our experiments on Intel(R) Xeon(R) CPU E5-2690 v4 @

2.60GHz with 8GB RAM per core. We were able to use 100 CPUs in parallel to iterate

over di�erent configurations and seeds. However, we would like to note that our algorithms

only requires 1 CPU and at most 10 mins to run, as our networks are relatively small.

B.4.1 Toy Experiment
Synthetic data experiments setup

Model. The observational data distribution is defined as follows:

Xi
i.i.d.
≥ N (0, 9)

Ai | xi ≥ fib(· | xi) where fib has been defined below

Yi | xi, ai ≥ N (ai ú xi, 1)

Behaviour and Target Policies. We define a family of policies fi‘(a | x) as follows:

fi‘(a|x) :=

Y
_____]

_____[

‘ (a œ {1, 2, 3}) + (1 ≠ 3‘) (a = 4) if |x| œ (3, Œ)
‘ (a œ {1, 2, 4}) + (1 ≠ 3‘) (a = 3) if |x| œ (2, 3]
‘ (a œ {1, 3, 4}) + (1 ≠ 3‘) (a = 2) if |x| œ (1, 2]
‘ (a œ {2, 3, 4}) + (1 ≠ 3‘) (a = 1) if |x| œ [0, 1]

We use the parameter ‘ œ (0, 1/3) to control the policy shift between target and behaviour

policies. For the behaviour policy fib, we use ‘b = 0.3, and for target policies fiú, we use

‘ú
œ {0.1, 0.2, 0.3}. Here we use m = 1000 training datapoints.

Neural Network Architectures

• To approximate the behaviour policy fib, we use a neural network with 2 hidden

layers and 16 nodes in each hidden layer, and ReLU activation function.

• To approximate P (y|x, a), we use N (µ(x, a), ‡(x, a)), where µ and ‡ are neural

networks with one-hidden layer, 32 nodes in the hidden layer, and ReLU activation

function.

https://anonymous.4open.science/r/COPP-75F5
https://anonymous.4open.science/r/COPP-75F5
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• For the score function, we train the quantiles q̂–/2 and q̂1≠–/2 using quantile regression,

each of which are modelled using neural networks with one-hidden layer, 32 nodes in

the hidden layer, and ReLU activation functions.

Results: Coverage as a function of increase calibration data As mentioned in the

main text, we have also performed experiments to investigate how much calibration data

is needed for COPP as well as other methods to converge to the required 90% coverage.

In the below figure B.3 we have plotted the coverage as a function of n calibration

data points. Our proposed method is converging much faster to the required coverage

compared to the competing methods.

Figure B.3: Results for synthetic data experiment with fib = fi0.3 and the target policy is
fiú = fi0.1. Left: our proposed method is able to converge to the required coverage rather quickly
compared to the competing methods. Right: here we see that our method is on par with using
the GT weights. Due to estimation error, COPP with estimated weights has slightly higher
variance in terms of coverage

Additional experimental baseline using weighted quantile regression. In order

to add an additional baseline that is also covariate dependent, we have added some

experiments using the weighted quantile regression (WQR) as described in Sec. B.3 on

our toy experiments from Sec. 3.6 in the main text. Below in Table B.1 and Table

B.2 we see the complete coverage table with the respective interval lengths. Note also

that WQR does not seem to perform well as it does not have any statistical guarantees

and heavily relies on good estimation of the ratio. We have added these experiments

here in the appendix for completeness and did not add it in the main text as the results

were not comparable to other baselines.
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Table B.1: Mean Coverage as a function of policy shift with 2 standard errors over 10 runs. We
have added weighted quantile regression (WQR) for completeness and note that it does not seem
to perform well.

Coverage �‘ = 0.0 �‘ = 0.1 �‘ = 0.2
COPP (Ours) 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.01
WIS 0.89 ± 0.01 0.91 ± 0.02 0.94 ± 0.02
SBA 0.90 ± 0.01 0.88 ± 0.01 0.87 ± 0.01

COPP (GT weights Ours) 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01
CP (no policy shift) 0.90 ± 0.01 0.87 ± 0.01 0.85 ± 0.01
CP (union) 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
WQR 0.82 ± 0.04 0.76 ± 0.03 0.70 ± 0.03

Table B.2: Mean Interval Length as a function of policy shift with 2 standard errors over 10
runs. We have added weighted quantile regression (WQR) for completeness and note that it does
not seem to perform well.

Interval Lengths �‘ = 0.0 �‘ = 0.1 �‘ = 0.2
COPP (Ours) 9.08 ± 0.10 9.48 ± 0.22 9.97 ± 0.38
WIS 24.14 ± 0.30 32.96 ± 1.80 43.12 ± 3.49
SBA 8.78 ± 0.12 8.94 ± 0.10 8.33 ± 0.09

COPP (GT weights Ours) 8.91 ± 0.09 9.25 ± 0.12 9.59 ± 0.20
CP (no policy shift) 9.00 ± 0.10 9.00 ± 0.10 9.00 ± 0.10
CP (union) 10.66 ± 0.18 11.04 ± 0.2 11.4 ± 0.26
WQR 8.55 ± 0.50 8.61 ± 0.52 8.70 ± 0.55

Experiments with continuous action space

As mentioned in the main text and also in Sec. B.2.1, our proposed method, contrary to the

work of Lei and Candès [2021] is able to also handle continuous action space. Given that we

are integrating out the actions when computing the weights in Eq. 3.7 our method trivially

extends to the continuous action space, whereas Lei and Candès [2021] is only applicable for

discrete action spaces, as they compute conformal intervals conditioned on a given action.

Model. The observational data distribution is defined as follows:

Xi
i.i.d.
≥ N (0, 4)

Ai | xi ≥ N (xi/4, 1)

Yi | xi, ai ≥ N (ai + xi, 1)

Target Policies. We define a family of policies fi‘(a | x) as follows:

fi‘(a | x) = N (x/4 + ‘, 1). (B.44)
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In our experiments, for the target policy fiú, we use fiú = fi‘ú for ‘ú
œ {0, 0.5, 1, 1.5, 2, 2.5}.

Results. Table B.3 shows the coverages of di�erent methods as the policy shift ‘ú increases.

The behaviour policy fib = fi0 is fixed and we use n = 5000 calibration datapoints and

m = 1000 training points, across 10 runs. Table B.3 shows, how COPP stays very close

to the required coverage of 90% across all target policies with ‘ú
Æ 2.0, compared to

WIS and SBA. Both, WIS intervals and SBA intervals su�er from under-coverage i.e.

below the required coverage. These results again support our hypothesis from Sec. 3.3.1,

which stated that COPP is less sensitive to estimation errors of P̂ (y|x, a) compared to

directly using P̂ (y|x, a) for the intervals i.e. SBA.

Next, Table B.4 shows the mean interval lengths and even though WIS intervals are

under-covered, the average interval length is huge compared to COPP. Additionally, for

‘ú
œ {0, 0.5, 1, 1.5}, COPP with estimated weights produces results which are close to

COPP intervals with ground truth weights. This shows that when the behaviour and

target policies have reasonable overlap, the e�ect of weights estimation error on COPP

results is limited. However, as ‘ú increases to 2.0 and 2.5, the overlap between behaviour

and target policies becomes low. We empirically note that this leads to high weights

estimation error and consequently under-coverage in COPP with estimated weights. In

contrast, COPP with ground truth weights still achieves required coverage, even though

it becomes conservative when the overlap is low. Figure B.4 visualises how the overlap

between target and behaviour policies decreases with increasing ‘ú. It can be seen that

‘ú
œ {2, 2.5} leads to very low overlap between the behaviour and target data.

Table B.3: Mean Coverage as a function of policy shift with 2 standard errors over 10 runs.

Coverage ‘ú = 0.0 ‘ú = 0.5 ‘ú = 1.0 ‘ú = 1.5 ‘ú = 2.0 ‘ú = 2.5
COPP (Ours) 0.90 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.89 ± 0.02 0.85 ± 0.02
WIS 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.02 0.89 ± 0.02 0.83 ± 0.02
SBA 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.89 ± 0.02 0.83 ± 0.02

COPP (GT Weights Ours) 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.90 ± 0.01 0.96 ± 0.02 0.93 ± 0.02
CP (no policy shift) 0.90 ± 0.01 0.88 ± 0.01 0.82 ± 0.01 0.73 ± 0.01 0.60 ± 0.01 0.46 ± 0.01
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Table B.4: Mean Interval Length as a function of policy shift with 2 standard errors over 10
runs.

Interval Lengths ‘ú = 0.0 ‘ú = 0.5 ‘ú = 1.0 ‘ú = 1.5 ‘ú = 2.0 ‘ú = 2.5
COPP (Ours) 4.75 ± 0.04 5.08 ± 0.09 5.89 ± 0.14 6.92 ± 0.18 7.82 ± 0.41 8.45 ± 0.44
WIS 9.55 ± 0.1 9.56 ± 0.12 9.56 ± 0.27 9.44 ± 0.38 9.40 ± 0.59 9.08 ± 0.64
SBA 4.38 ± 0.03 4.37 ± 0.03 4.36 ± 0.04 4.34 ± 0.07 4.31 ± 0.1 4.28 ± 0.14

COPP (GT Weights Ours) 4.73 ± 0.05 5.07 ± 0.09 5.87 ± 0.14 6.82 ± 0.13 7.57 ± 0.19 8.07 ± 0.22
CP (no policy shift) 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05

B.4.2 Experiments on Microsoft Ranking Dataset

Dataset details. The dataset contains relevance scores for websites recommended to

di�erent users, and comprises of 30, 000 user-website pairs. For a user i and website j,

the data contains a 136-dimensional feature vector uj
i , which consists of user i’s attributes

corresponding to website j, such as length of stay or number of clicks on the website.

Furthermore, for each user-website pair, the dataset also contains a relevance score, i.e.

how relevant the website was to the user.

First, given a user i we sample (with replacement) 5 websites, {uj
i }

5
j=1, from the

data. Next, we reformulate this into a contextual bandit where A œ {1, 2, 3, 4, 5}

corresponds to the website we recommend to a user. For a user i, we define X by

combining the 5 feature vectors corresponding to the user, i.e. X œ R5◊136, where

xi = (u1
i , u2

i , u3
i , u4

i , u5
i ). In addition, Y œ {0, 1, 2, 3, 4} corresponds to the relevance score

for the A’th website, i.e. the recommended website. The goal is to construct prediction

sets that are guaranteed to contain the true relevance score with a probability of 90%.

Here we use m = 5000 training data points.

Behaviour and Target Policies. We first train a Neural Network (NN) classifier model

mapping each 136-dimensional feature vector to the softmax scores for each relevance score

class, f̂◊ : U æ [0, 1]5. We use this trained model f̂◊ to define a family of policies such

that we pick the most relevant website as predicted by f̂◊ with probability ‘ and the rest

uniformly with probability (1 ≠ ‘)/4. Formally, this has been expressed as follows. We use

f̂ label
◊ to denote the relevance class predicted by f̂◊, i.e. f̂ label

◊ (u) := arg maxi{f̂◊(u)i}.
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Figure B.4: Plots of A against X, where X ≥ N (0, 4) and A | X is sampled from behaviour
and target policies. Here, target policies are defined in (B.44) for ‘ú

œ {0, 0.5, 1, 1.5, 2, 2.5}.

Then,

fi‘(a | X = (u1, u2, u3, u4, u5)) :=‘ (a = arg max
j

{f̂ label
◊ (uj)})

+ (1 ≠ ‘)/4 (a ”= arg max
j

{f̂ label
◊ (uj)})

Estimation of ratios, ŵ(X, Y ). To estimate the P̂ (y | x, a) we use the trained model f̂◊

as follows:

P̂ (y | x = (u1, u2, u3, u4, u5), a) = f̂◊(ua)y

where f̂◊(ua)y corresponds to the softmax prediction of ua for label y under the model f̂◊.

To estimate the behaviour policy fîb, we train a classifier model X æ A using a neural



B. Conformal O�-Policy Prediction in Contextual Bandits 160

network. We use (3.7) to estimate the weights ŵ(x, y).

Neural Network Architectures

• To approximate the behaviour policy, we use a neural network with 2 hidden layers

and 25 nodes in each hidden layer, ReLU activations and softmax output.

• To approximate f̂◊, we use a neural network with 2 hidden layers with 64 nodes each

and ReLU activations.

Results: Coverage as a function of increase calibration data. As mentioned in

the main text, we have also performed experiments to investigate how much calibration

data is needed for COPP as well as other methods to converge to the required 90%

coverage. In the below plot we have plotted the coverage as a function of n calibration

data points. We observe that our proposed method is converging much faster to the

required coverage compared to the competing methods.

Figure B.5: Results of Microsoft Ranking Dataset experiment with behaviour policy fib = fi0.5
and the target policy is fiú = fi0.2. Our proposed method is able to converge to the required
coverage rather quickly compared to the competing methods
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Table B.5: Coverages for COPP with and without label conditioned coverage, ĈY
n and Ĉn

respectively. Overall coverage refers to marginal coverage while Y = y refers to coverage
conditioned on Y = y. Here ntest corresponds to the number of test data points (≥ P fiú).

ntest Ĉn Cov ĈY

n Cov
Overall 5000 0.896 ± 0.005 0.941 ± 0.003
Y = 0 266 0.700 ± 0.020 1.000 ± 0.000
Y = 1 293 0.526 ± 0.019 1.000 ± 0.000
Y = 2 228 0.772 ± 0.018 0.990 ± 0.029
Y = 3 320 0.852 ± 0.015 0.964 ± 0.035
Y = 4 3893 0.950 ± 0.006 0.928 ± 0.003

Results: COPP for Class-balanced coverage

Table B.5 shows the coverages of COPP predictive sets (Ĉn with marginal coverage

guarantee constructed using algorithm 1) and COPP intervals with label conditioned

coverage (ĈY

n satisfying (B.37) constructed using algorithm 2). Extensions of WIS and

SBA to the conditional case are not straightforward and hence have not been included. For

Ĉn, while the overall coverage is very close to the required coverage of 90%, we see that

there is under-coverage for Y = 0, 1, 2, 3. This can be explained by the data imbalance –

the number of test data points with Y = 0, 1, 2, 3 is significantly lower than Y = 4.

This under-coverage problem disappears in ĈY

n . Instead, in cases where number of

data points is small, (Y = 0, 1, 2, 3), the predictive sets ĈY

n are conservative (i.e. have

coverage > 90%). As a result, the overall coverage increases to 0.941. This is a price to be

paid for label conditioned coverage – the overall coverage may increase, however, being

conservative in safety-critical settings is better than being overly optimistic.

B.4.3 UCI Dataset experiments

Following Huang et al. [2021], Dudík et al. [2014a], Wang et al. [2017a] we apply COPP on

UCI classification datasets. We can pose classification as contextual bandits by defining

the covariates X as the features, the action space A = K, where K is the set of labels, and

the outcomes are binary, i.e. Y = {0, 1}, defined by Y | X, A = (X belongs to class A).

Here we use m = 1000 training data points.
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Behaviour and Target Policies. First we train a neural network classifier mapping

each covariate to the softmax scores for each class, f̂◊ : X æ [0, 1]|K|. We use this

trained model f̂◊ to define a family of policies such that we pick the most likely label as

predicted by f̂◊ with probability ‘ and the rest uniformly with probability. Formally,

this can be expressed as follows:

fi‘(a | x) := ‘ (a = arg max
kœK

{f̂◊(x)k}) + (1 ≠ ‘)/(|K| ≠ 1) (a ”= arg max
kœK

{f̂◊(x)k})

Like other experiments, we use ‘ to control the shift between behaviour and target policies.

For fib, we use ‘b = 0.5 and for ‘ú
œ {0.05, 0.3, 0.4, 0.5, 0.6, 0.7, 0.95}. Using this behaviour

policy fib, we generate an observational dataset Dobs = {xi, ai, yi}
nobs
i=1 which is then split

into training Dtr and calibration datasets Dcal, of sizes m and n respectively.

Estimation of ratios, ŵ(X, Y ). To estimate the P̂ (y | x, a) we use the trained model f̂◊

as follows:

P̂ (Y = 1 | x, a) = f̂◊(x)a

where f̂◊(x)a corresponds the softmax prediction of x for label a under the model f̂◊. To

estimate the behaviour policy fîb, we train a classifier model X æ A using a neural network.

We use (3.7) in main text to estimate weights ŵ(x, y).

Score. We define P̂ fib(y | x) = q
iœK fîb(A = i|x)P̂ (y|x, A = i). Using similar formulation

as in Angelopoulos and Bates [2021], we define the score as

s(x, y) =
ÿ

yÕ=0,1
P̂ fib(yÕ

| x) (P̂ fib(yÕ
| x) Ø P̂ fib(y | x))

Neural Network Architectures

• To approximate the behaviour policy, we use a neural network with 2 hidden layers

and 64 nodes in each hidden layer, ReLU activations and softmax output.

• To approximate f̂◊, we use a neural network with 2 hidden layers with 64 nodes each

and ReLU activations.
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Results. Tables B.6-B.11 show the coverages across varying target policies for di�erent

classification datasets. The behaviour policy fib = fi0.5 is fixed and we use n = 5000

calibration datapoints, across 10 runs with m = 5000 training data. The tables show that

COPP is able to provide the required coverage of 90% across all target policies. Moreover,

compared to COPP, SBA and WIS are overly conservative. WIS estimates are not adaptive

w.r.t. X, and as a result, the predictive sets produced are uninformative (i.e. contain

all outcomes) in these experiments where the outcome is binary.

We have also included a comparison of COPP using estimated behaviour policy with

COPP using GT behaviour policy. The latter provides more accurate coverage, and using

estimated behaviour policy provides slightly over-covered predictive sets comparatively

in most cases. This can be explained by policy estimation error. Additionally, we

observe that using standard CP leads to predictive sets which are not adaptive to policy

shift. As a result, the standard CP predictive sets get overly conservative (optimistic)

as �‘ becomes more negative (positive).
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Table B.6: Yeast dataset results

�‘ = ≠0.45 �‘ = ≠0.2 �‘ = ≠0.1 �‘ = 0.0 �‘ = 0.1 �‘ = 0.2 �‘ = 0.45
COPP (Ours) 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.91±0.00
WIS 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SBA 0.98±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

COPP (GT behav policy) 0.91±0.00 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00
CP (no policy shift) 0.97±0.00 0.93±0.00 0.92±0.00 0.90±0.00 0.89±0.00 0.87±0.00 0.83±0.00

Table B.7: Ecoli dataset results

�‘ = ≠0.45 �‘ = ≠0.2 �‘ = ≠0.1 �‘ = 0.0 �‘ = 0.1 �‘ = 0.2 �‘ = 0.45

COPP (Ours) 0.92±0.00 0.91±0.00 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00

WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SBA 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

COPP (GT behav policy) 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.01

CP (no policy shift) 0.92±0.00 0.91±0.00 0.91±0.00 0.90±0.00 0.90±0.00 0.89±0.00 0.88±0.00

Table B.8: Letter dataset results

�‘ = ≠0.45 �‘ = ≠0.2 �‘ = ≠0.1 �‘ = 0.0 �‘ = 0.1 �‘ = 0.2 �‘ = 0.45

COPP (Ours) 0.95±0.00 0.93±0.00 0.93±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.91±0.00

WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SBA 0.97±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

COPP (GT behav policy) 0.92±0.00 0.91±0.00 0.91±0.00 0.90±0.00 0.89±0.00 0.89±0.00 0.88±0.00

CP (no policy shift) 0.99±0.00 0.94±0.00 0.92±0.00 0.90±0.00 0.88±0.00 0.86±0.00 0.81±0.00

Table B.9: Optdigits dataset results

�‘ = ≠0.45 �‘ = ≠0.2 �‘ = ≠0.1 �‘ = 0.0 �‘ = 0.1 �‘ = 0.2 �‘ = 0.45

COPP (Ours) 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00

WIS 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SBA 0.97±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00

COPP (GT behav policy) 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.89±0.00 0.89±0.00

CP (no policy shift) 0.97±0.00 0.93±0.00 0.91±0.00 0.90±0.00 0.88±0.00 0.87±0.00 0.83±0.00

Table B.10: Pendigits dataset results

�‘ = ≠0.45 �‘ = ≠0.2 �‘ = ≠0.1 �‘ = 0.0 �‘ = 0.1 �‘ = 0.2 �‘ = 0.45

COPP (Ours) 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.91±0.00

WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SBA 0.97±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00

COPP (GT behav policy) 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.89±0.00 0.89±0.00

CP (no policy shift) 0.99±0.00 0.94±0.00 0.92±0.00 0.90±0.00 0.88±0.00 0.86±0.00 0.81±0.00
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Table B.11: Satimage dataset results

�‘ = ≠0.45 �‘ = ≠0.2 �‘ = ≠0.1 �‘ = 0.0 �‘ = 0.1 �‘ = 0.2 �‘ = 0.45

COPP (Ours) 0.92±0.00 0.91±0.00 0.91±0.00 0.91±0.00 0.91±0.00 0.91±0.00 0.91±0.00

WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SBA 0.98±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00

COPP (GT behav policy) 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.89±0.00

CP (no policy shift) 0.97±0.00 0.93±0.00 0.92±0.00 0.90±0.00 0.88±0.00 0.87±0.00 0.83±0.00
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B.5 How the miscoverage depends on P̂ (y | x, a)

Proposition B.5.1
Let

w̃(x, y) :=
s

P̂ (y | x, a)fiú(a | x)da
s

P̂ (y | x, a)fib(a | x)da
.

Assume that P̂ (y | x, a)/P (y | x, a) œ [1/�, �] for some � Ø 1. Then,

�w := 1
2E(X,Y )≥P fib

X,Y
| w̃(X, Y ) ≠ w(X, Y ) |Æ �2

≠ 1.

Proof. In this proof, we investigate the error of the weights as a function of the error in

P̂ (y | x, a). Therefore, to isolate this e�ect we ignore the Monte Carlo error, and assume

known behavioural policy fib.

Under the assumption above, we have that

1/�
s

P (y | x, a)fiú(a | x)da

�
s

P (y | x, a)fib(a | x)da
Æw̃(x, y) Æ

�
s

P (y | x, a)fiú(a | x)da

1/�
s

P (y | x, a)fib(a | x)da
.

=∆
1
�2 w(x, y) Æw̃(x, y) Æ �2w(x, y)

This means that,

3 1
�2 ≠ 1

4
w(x, y) Æw̃(x, y) ≠ w(x, y) Æ (�2

≠ 1)w(x, y)

So,

| w̃(x, y) ≠ w(x, y) |Æ (�2
≠ 1)w(x, y)

And therefore,

E(X,Y )≥P fib
X,Y

| w̃(X, Y ) ≠ w(X, Y ) |Æ (�2
≠ 1)E(X,Y )≥P fib

X,Y
[w(X, Y )] = �2

≠ 1
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C.1 Notation
zt:tÕ The sequence of elements (zt, . . . , ztÕ) (or the empty

sequence when t > tÕ)
Zt:tÕ (where each Zi is a set) The cartesian product Zt ◊ · · · ◊ ZtÕ (or the empty set

when t > tÕ)
Zt:tÕ(a1:tÕ) The sequence of potential outcomes Zt(a1:t), . . . , ZtÕ(a1:tÕ)

(or the empty sequence when t > tÕ)
Law[Z] The distribution of the random variable Z
Law[Z | M ] The conditional distribution of Z given M , where M is

either an event or a random variable
Z

a.s.= Z Õ The random variables Z and Z Õ are almost surely equal,
i.e. P(Z = Z Õ) = 1

Z ‹‹ Z Õ The random variables Z and Z Õ are independent
Z ‹‹ Z Õ

| Z ÕÕ The random variables Z and Z Õ are conditionally inde-
pendent given the random variable Z ÕÕ

(E) Indicator function of some event E

C.2 Proof of Proposition 4.2.1 (unconditional form
of interventional correctness)

Proof. Fix any choice of a1:T œ A1:T . By disintegrating Law[X0, „X1:T (X0, a1:T )] and

Law[X0:T (a1:T )] along their common X0-marginal (which is namely Law[X0]), it holds that

Law[X0, „X1:T (X0, a1:T )] = Law[X0:T (a1:T )] (C.1)

if and only if

Law[„X1:T (X0, a1:T ) | X0 = x0] = Law[X1:T (a1:T ) | X0 = x0] (C.2)

for Law[X0]-almost all x0 œ X0. But now, our definition of „X1:T (x0, a1:T ) in terms of ht

and U1:t means we can write „X1:T (X0, a1:T ) = h(X0, a1:T , U1:T ), where

h(x0, a1:T , u1:T ) := (h1(x0, a1, u1), . . . , hT (x0, a1:T , u1:T )).

For all x0 œ X0 and measurable B1:T ™ X1:T , we then have

Law[„X1:T (x0, a1:T )](B1:T ) = E[ (h(x0, a1:T , U1:T ) œ B1:T )]

=
⁄

(h(x0, a1:T , u1:T ) œ B1:T ) Law[U1:T ](du1:T ).
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It is standard to show that the right-hand side is a Markov kernel in x0 and B1:T . Moreover,

for any measurable B0 ™ X0, we have
⁄

B0

Law[„X1:T (x0, a1:T )](B1:T ) Law[X0](dx0)

=
⁄

B0

5⁄
(h(x0, a1:T , u1:T ) œ B1:T ) Law[U1:T ](du1:T )

6
Law[X0](dx0)

=
⁄

(x0 œ B0, h(x0, a1:T , u1:T ) œ B1:T ) Law[X0, U1:T ](dx0, du1:T )

= Law[X0, „X1:T (X0, a1:T )](B0:T ),

where the second step follows because X0 ‹‹ U1:T . It therefore follows that (x0, B1:T ) ‘æ

Law[„X1:T (x0, a1:T )](B1:T ) is a regular conditional distribution of „X1:T (X0, a1:T ) given X0,

i.e.

Law[„X1:T (x0, a1:T )] = Law[„X1:T (X0, a1:T ) | X0 = x0] for Law[X0]-almost all x0 œ X0.

Substituting this into (C.2), we see that (C.1) holds if and only if

Law[„X1:T (x0, a1:T )] = Law[X1:T (a1:T ) | X0 = x0]

for Law[X0]-almost all x0 œ X0. The result now follows since a1:T was arbitrary.

C.3 Online prediction

C.3.1 Correctness in the online setting

A distinguishing feature of many digital twins is their ability to integrate real-time

information obtained from sensors in their environment [Barricelli et al., 2019]. It is

therefore relevant to consider a setting in which a twin is used repeatedly to make a

sequence of predictions over time, each time taking all previous information into account.

One way to formalize this is to instantiate our model for the twin at each timestep. For

example, we could represent the predictions made by the twin at t = 0 after observing

initial covariates x0 as potential outcomes („X1
1:T (x0, a1:T ) : a1:T œ A1:T ), similar to what

we did in the main text. We could then represent the predictions made by the twin

after some action a1 is taken and an additional observation x1 is made via potential

outcomes („X2
2:T (x0:1, a1:T ) : a2:T œ A2:T ). More generally, for t œ {1, . . . , T}, we could

introduce potential outcomes („X t
t:T (x0:t≠1, a1:T ) : at:T œ At:T ) to represent the predictions
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that the twin would make at time t after the observations x0:t≠1 are made and the

actions a1:t≠1 are taken.

This extended model requires a new definition of correctness than our Definition 4.2.1

from the main text. A natural approach is to say that the twin is correct in this new setting if

Law[„X t
t:T (x0:t≠1, a1:T )] = Law[Xt:T (a1:T ) | X0:t≠1(a1:t≠1) = x0:t≠1] (C.3)

for all t œ {1, . . . , T}, a1:T œ A1:T , and Law[X0:t≠1(a1:t≠1)]-almost all x0:t≠1 œ X0:t≠1. A

twin with this property would at each step be able to accurately simulate the future in

light of previous information, use this to choose a next action to take, observe the result of

doing so, and then repeat. It is possible to show that (C.3) holds if and only if we have

Law[„X1
1:T (x0, a1:T )] = Law[X1:T (a1:T ) | X0 = x0]

Law[„X t
t:T (x0:t≠1, a1:T )] = Law[„X1

t:T (x0, a1:T ) | „X1
1:t≠1(x0, a1:t≠1) = x1:t≠1]

for all t œ {1, . . . , T}, a1:T œ A1:T , Law[X0]-almost all x0 œ X0, and Law[„X1
1:t≠1(x0, a1:t≠1)]-

almost all x1:t≠1 œ X1:t≠1. The first condition here says that „X1
1:T (x0, a1:T ) must be

interventionally correct in the sense of Definition 4.2.1 from the main text. The second

condition says that the predictions made by the twin across di�erent timesteps must

be internally consistent with each other insofar as their conditional distributions must

align. This holds automatically in many circumstances, such as if the predictions of

the twin are obtained from a Bayesian model (for example), and otherwise could be

checked numerically given the ability to run simulations from the twin, without the need

to obtain data or refer to the real-world process in any way. As such, the problem of

assessing the correctness of the twin in this new sense primarily reduces to the problem

of assessing the correctness of „X1
1:T (x0, a1:T ) in the sense of Definition 4.2.1 in the main

text, which motivates our focus on that condition.

C.3.2 Alternative notions of online correctness

An important and interesting subtlety arises in this context that is worth noting. In general

it does not follow that a twin correct in the sense of (C.3) satisfies

Law[„X t
t:T (x0:t≠1, a1:T )] = Law[Xt:T (a1:T ) | X0:t≠1(a1:t≠1) = x0:t≠1, A1:t≠1 = a1:t≠1] (C.4)
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for all a1:T œ A1:T , and Law[X0:t≠1(a1:t≠1) | A1:t≠1 = a1:t≠1]-almost all x0:t≠1 œ X0:t≠1,

since in general it does not hold that

Law[Xt:T (a1:T ) | X0:t≠1(a1:t≠1) = x0:t≠1] = Law[Xt:T (a1:T ) | X0:t≠1(a1:t≠1) = x0:t≠1, A1:t≠1 = a1:t≠1].

for all a1:T œ A1:T and Law[X0:t≠1(a1:t≠1) | A1:t≠1 = a1:t≠1]-almost all x0:t≠1 œ X0:t≠1

unless the actions A1:t≠1 are unconfounded. (Here as usual A1:T denotes the actions of

a behavioural agent; see Section 4.3 of the main text.) In other words, a twin that is

correct in the sense of (C.3) will make accurate predictions at time t when every action

taken before time t was unconfounded (as occurs for example when the twin is directly

in control of the decision-making process), but in general not when certain taken actions

before time t were chosen by a behavioural agent with access to more context than is

available to the twin (as may occur for example when the twin is used as a decision-support

tool). However, should it be desirable, our framework could be extended to encompass the

alternative condition in (C.4) by relabelling the observed history (X0:t≠1(A1:t≠1), A1:t≠1)

as X0, and then assessing the correctness of the potential outcomes „X t
t:T (x0:t≠1, a1:T ) in

the sense of Definition 4.2.1 from the main text.

Overall, the “right” notion of correctness in this online setting is to some extent a

design choice. We believe our causal approach to twin assessment provides a useful

framework for formulating and reasoning about these possibilities, and consider the

investigation of assessment strategies for additional usage regimes to be an interesting

direction for future work.

C.4 Proof of Theorem 4.3.1 (interventional distribu-
tions are not identifiable)

It is well-known in the causal inference literature that the interventional behaviour of the

real-world process cannot be uniquely identified from observational data. For completeness,

we now provide a self-contained proof of this result in our notation. Our statement

here is lengthier than Theorem 4.3.1 in the main text in order to clarify what is meant

by “uniquely identified”: intuitively, the idea is that there always exist distinct families

of potential outcomes whose interventional behaviours di�er and yet give rise to the

same observational data.
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Theorem C.4.1
Suppose we have a1:T œ A1:T such that P(A1:T ”= a1:T ) > 0. Then there exist potential

outcomes (X̃0:T (aÕ

1:T ) : aÕ

1:T œ A1:T ) such that

(X̃0:T (A1:T ), A1:T ) a.s.= (X0:T (A1:T ), A1:T ). (C.5)

but for which Law[X̃0:T (a1:t)] ”= Law[X0:T (a1:t)].

Proof. Our assumption that P(A1:T ”= a1:T ) > 0 means there must exist some t œ {1, . . . , T}

such that P(A1:t ”= a1:t) > 0. Since Xt = Rdt , we may also choose some xt œ Xt with

P(Xt(a1:t) = xt | A1:t ”= a1:t) ”= 1. Then, for each s œ {0, . . . , T} and aÕ

1:s œ A1:s, define

X̃s(aÕ

1:s) :=

Y
]

[
(A1:t = a1:t) Xt(a1:t) + (A1:t ”= a1:t) xt if s = t and aÕ

1:s = a1:t

Xs(aÕ

1:s) otherwise,

It is then easily checked that (C.5) holds, but

Law[X̃t(a1:t)] = Law[X̃t(a1:t) | A1:t = a1:t]P(A1:t = a1:t) + Law[X̃t(a1:t) | A1:t ”= a1:t]P(A1:t ”= a1:t)

= Law[Xt(a1:t) | A1:t = a1:t]P(A1:t = a1:t) + Dirac(xt)P(A1:t ”= a1:t)

”= Law[Xt(a1:t) | A1:t = a1:t]P(A1:t = a1:t) + Law[Xt(a1:t) | A1:t ”= a1:t]P(A1:t ”= a1:t)

= Law[Xt(a1:t)],

from which the result follows.

C.5 Deterministic potential outcomes are unconfounded

In this section we expand on our earlier claim that, if the real-world process is deterministic,

then the observational data is unconfounded. We first make this claim precise. By “deter-

ministic”, we mean that there exist measurable functions gt for t œ {1, . . . , T} such that

Xt(a1:t)
a.s.= gt(X0:t≠1(a1:t≠1), a1:t) for all t œ {1, . . . , T} and a1:t œ A1:t. (C.6)

By “unconfounded”, we mean that the sequential randomisation assumption (SRA)

introduced by Robins [Robins, 1986] holds, i.e.

(Xs(a1:s) : s œ {1, . . . , T}, a1:s œ A1:s) ‹‹ At | X0:t≠1(A1:t≠1), A1:t≠1 for all t œ {1, . . . , T},

(C.7)



C. Causal Falsification of Digital Twins 173

where ‹‹ denotes conditional independence. Intuitively, this says that, apart from the

historical observations (X0:t≠1(A1:t≠1), A1:t≠1), any additional factors that influence the

agent’s choice of action At are independent of the behaviour of the real-world process. The

SRA provides a standard formulation of the notion of unconfoundedness in longitudinal

settings such as ours (see [Tsiatis et al., 2019, Chapter 5] for a review).

It is now a standard exercise to show that (C.6) implies (C.7). We include a proof

below for completeness. Key to this is the following straightforward Lemma.

Lemma C.5.1
Suppose U and V are random variables such that, for some measurable function g, it

holds that U
a.s.= g(V ). Then, for any other random variable W , we have

U ‹‹ W | V.

Proof. By standard properties of conditional expectations, for any measurable sets S1 and

S2, we have almost surely

P(U œ S1, W œ S2 | V ) = E[ (g(V ) œ S1) (W œ S2) | V ]

= (g(V ) œ S1)E[ (W œ S2) | V ]

= E[ (U œ S1) | V ]P(W œ S2 | V )

= P(U œ S1 | V )P(W œ S2 | V ),

which gives the result.

It is now easy to see that (C.6) implies (C.7). Indeed, by recursive substitution, it is

straightforward to show that there exist measurable functions g̃t for t œ {1, . . . , T} such that

Xt(a1:t)
a.s.= g̃t(X0, a1:t) for all t œ {1, . . . , T} and a1:t œ A1:t,

and so

(Xs(a1:s) : s œ {1, . . . , T}, a1:s œ A1:s) = (g̃t(X0, a1:s) : s œ {1, . . . , T}, a1:s œ A1:s).

The right-hand side is now seen to be a measurable function of X0 and hence certainly

of (X0:t≠1(A1:t≠1), A1:t≠1), so that the result follows by Lemma C.5.1.
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C.6 Motivating toy example

We provide here a toy scenario that illustrates intuitively the pitfalls that may arise

when assessing twins using observational data without properly accounting for causal

considerations (including unmeasured confounding in particular). Suppose a digital twin

has been designed for a particular make of car, e.g. to facilitate autonomous driving [Allamaa

et al., 2022]. The twin simulates how quantities such as the velocity and fuel consumption

of the car respond as certain inputs are applied to it, such as braking, acceleration, steering,

etc. We wish to assess the accuracy of this twin using a dataset obtained from a fleet of

the same make. The braking performance of these vehicles is significantly a�ected by the

age of their brake pads: if these are fairly new, then an aggressive braking strategy will

stop the car, while if these are old, then the same aggressive strategy will send the car

into a skid that will reduce braking e�cacy. Brake pad age is not recorded in the data we

have obtained, but was known to the drivers who operated these vehicles (e.g. perhaps

they were aware of how recently their car was serviced), and so the drivers of cars with

old brake pads tended to avoid braking aggressively out of safety concerns.

A naive approach to twin assessment in this situation would directly compare the

outputs of the twin with the data and conclude the twin is accurate if these match closely.

However, in this scenario, the data contains a spurious relationship between braking

strategy and the performance of the car: since aggressive braking is only observed for

cars with new brake pads, the data appears to show that aggressive braking is e�ective

at stopping the car, while in fact this is not the case for cars with older brake pads. As

such, the naive assessment approach would yield misleading information about the twin: a

twin that captures only the behaviour of cars with newer brake pads would appear to be

correct, while a twin that captures the full range of possibilities (i.e. regardless of brake

pad age) would deviate from the observational data and appear therefore less accurate.

Figure C.1 illustrates this pictorially under a toy model for this scenario.

In the causal inference literature, any unmeasured quantity (e.g. brake pad age) that

a�ects both some choice of action taken in the data (e.g. aggressive braking) and the

resulting observation (e.g. speed) is referred to as an unmeasured confounder. In general,

whenever an unmeasured confounder is present, a potential discrepancy arises between

how the real-world process was observed to behave in the dataset and how it would behave
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Figure C.1: The discrepancy between observational data and interventional behavior. The data
only show the e�ect of aggressive braking on cars with new brake pads (blue). This di�ers from
what would be observed if aggressive braking were applied to the entire fleet of cars, encompassing
both those with old and new brake pads (red).

under certain interventions. An obvious approach towards mitigating this possibility is

to measure additional quantities that may a�ect the outcome of interest. For example, if

brake pad age were included in the data in the scenario above, then it would be possible to

adjust for its e�ect on braking performance. However, in many cases, gathering additional

data may be costly or impractical. Moreover, even if this strategy is pursued, it is rarely

possible to rule out the possibility of unmeasured confounding altogether, especially for

complicated real-world problems [Tsiatis et al., 2019]. For example, in the scenario above,

it is very conceivable that some other factor such as weather conditions could play a similar

confounding role as brake pad age, and so would need also to be included in the data, and

so on. Analogous scenarios are also easily forthcoming for other application domains such

as medicine and economics [Manski, 1995, Tsiatis et al., 2019, Hernán and Robins, 2020].

As such, rather than attempting to sidestep the issue of unmeasured confounding, we

instead propose a methodology for assessing twins using data that is robust to its presence.

C.7 Causal bounds
C.7.1 Proof of Theorem 4.4.1

Proof. We prove the lower bound; the upper bound is analogous. It is easily checked that

E[Y (a1:t) | X0:t(a1:t) œ B0:t]

= E[Y (a1:t) | X0:t(a1:t) œ B0:t, A1:t = a1:t]P(A1:t = a1:t | X0:t(a1:t) œ B0:t)

+ E[Y (a1:t) | X0:t(a1:t) œ B0:t, A1:t ”= a1:t]P(A1:t ”= a1:t | X0:t(a1:t) œ B0:t). (C.8)
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If P(A1:t = a1:t | X0:t(a1:t) œ B0:t) > 0, then

E[Y (a1:t) | X0:t(a1:t) œ B0:t, A1:t = a1:t] = E[Y (A1:t) | X0:t(A1:t) œ B0:t, A1:t = a1:t]

= E[Y (A1:N) | X0:N(A1:N) œ B0:N , A1:t = a1:t],

where the second step follows because P(N = t | A1:t = a1:t) = 1. Similarly, if P(A1:t ”=

a1:t | X0:t(a1:t) œ B0:t) > 0, then (4.5) implies

E[Y (a1:t) | X0:t(a1:t) œ B0:t, A1:t ”= a1:t] Ø ylo.

Substituting these results into (C.8), we obtain

E[Y (a1:t) | X0:t(a1:t) œ B0:t]

Ø E[Y (A1:t) | X0:N(A1:N) œ B0:N , A1:t = a1:t]P(A1:t = a1:t | X0:t(a1:t) œ B0:t)

+ ylo P(A1:t ”= a1:t | X0:t(a1:t) œ B0:t). (C.9)

Now observe that the right-hand side of (C.9) is a convex combination with mixture weights

P(A1:t = a1:t | X0:t(a1:t) œ B0:t) and P(A1:t ”= a1:t | X0:t(a1:t) œ B0:t). We can bound

P(A1:t = a1:t | X0:t(a1:t) œ B0:t) = P(X0:t(a1:t) œ B0:t, A1:t = a1:t)
P(X0:t(a1:t) œ B0:t)

Ø
P(X0:t(a1:t) œ B0:t, A1:t = a1:t)

P(X0:N(a1:N) œ B0:N)

= P(X0:N(A1:N) œ B0:N , A1:t = a1:t)
P(X0:N(A1:N) œ B0:N)

= P(A1:t = a1:t | X0:N(A1:N) œ B0:N), (C.10)

where the inequality holds because t Ø N almost surely, and the second equality holds

because the definition of N means

X0:N(a1:N) a.s.= X0:N(A1:N).

As such, we can bound the convex combination in (C.9) from below by replacing its mixture

weights with P(A1:t = a1:t | X0:N(A1:N) œ B0:N) and P(A1:t ”= a1:t | X0:N(a1:N) œ B0:N),

which shifts weight from the E[Y (A1:t) | A1:t = a1:t, X0:N(A1:N) œ B0:N ] term onto the ylo
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term. This yields

E[Y (a1:t) | X0:t(a1:t) œ B0:t]

Ø E[Y (A1:t) | X0:N(A1:N) œ B0:N , A1:t = a1:t]P(A1:t = a1:t | X0:N(a1:N) œ B0:N)

+ ylo P(A1:t ”= a1:t | X0:N(a1:N) œ B0:N)

= E[Y (A1:t) (A1:t = a1:t) + ylo (A1:t ”= a1:t) | X0:N(A1:N) œ B0:N ]

= E[Ylo | X0:N(A1:N) œ B0:N ].

C.7.2 Proof of Proposition 4.4.1

Proof. From the definition of Yup, we have straightforwardly

Qup = E[Y (A1:t) | X0:N(A1:N) œ B0:N , A1:t = a1:t]P(A1:t = a1:t | X0:N(A1:N) œ B0:N)

+ yup P(A1:t ”= a1:t | X0:N(A1:N) œ B0:N).

A similar expression holds for Qlo. Subtracting these two expressions yields

Qup ≠ Qlo = (yup ≠ ylo) (1 ≠ P(A1:t = a1:t | X0:N(A1:N) œ B0:N)).

Similar manipulations show that

E[Yup] ≠ E[Ylo] = (yup ≠ ylo) (1 ≠ P(A1:t = a1:t)),

and the result now follows.

C.7.3 Proof of Proposition 4.4.2 and discussion

Proof. We consider the case of the lower bound; the case of the upper bound is analogous.

Choose x1:T œ B1:T arbitrarily. (Certainly some choice is always possible, since each Bs

has positive measure and is therefore nonempty.) Define

X̃0 := X0

X̃s(aÕ

1:s) := (A1:s = aÕ

1:s) Xs(aÕ

1:s) + (A1:s ”= aÕ

1:s) xs for each s œ {0, . . . , T} and aÕ

1:s œ A1:s,
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and similarly let

Ỹ (aÕ

1:t) = (A1:t = aÕ

1:t) Y (aÕ

1:t) + (A1:t ”= aÕ

1:t) ylo for all aÕ

1:t œ A1:t.

It is easy to check that (X̃0:T (A1:T ), Ỹ (A1:t), A1:T ) a.s.= (X0:T (A1:T ), Y (A1:t), A1:T ). But now

we have directly Ỹ (a1:t) = Ylo. Moreover, it is easily checked from the definition of N and

X̃0:t(a1:t) that

X̃0:t(a1:t)
a.s.= (X0:N(A1:N), xN+1:t),

so that

(X̃0:t(a1:t) œ B0:t)
a.s.= (X̃0:N(a1:N) œ B0:N , xN+1:t œ BN+1:t)
a.s.= (X0:N(A1:N) œ B0:N)

since each xs œ Bs. Consequently,

E[Ỹ (a1:t) | X̃0:t(a1:t) œ B0:t] = E[Ylo | X̃0:t(a1:t) œ B0:t]

= E[Ylo | X0:N(A1:N) œ B0:N ],

which gives the result.

C.7.4 Bounds on the conditional expectation given specific co-
variate values

Theorem 4.4.1 provides a bound on E[Y (a1:t) | X0:t(a1:t) œ B0:t], i.e. the conditional

expectation given the event {X0:t(a1:t) œ B0:t}, which is assumed to have positive probability.

We consider here the prospect of obtaining bounds on E[Y (a1:t) | X0:t(a1:t)], i.e. the

conditional expectation given the value of X0:t(a1:t). For falsification purposes, this would

provide a means for determining that twin is incorrect when it outputs specific values of
„X0:t(a1:t), rather than just that it is incorrect on average across all runs that output

values „X0:t(a1:t) œ B0:t.

When X0:t(a1:t) is discrete, Theorem 4.4.1 yields measurable functions glo, gup : X0:t æ R

such that

glo(X0:t(a1:t)) Æ E[Y (a1:t) | X0:t(a1:t)] Æ gup(X0:t(a1:t)) almost surely. (C.11)

In particular, glo(x0:t) is obtained as the value of E[Ylo | X0:N(A1:N) œ B0:N ] for B0:t :=

{x0:t}, and similarly for gup(x0:t). Moreover, since the constants ylo, yup œ R in Theorem
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4.4.1 were allowed to depend on B0:t, and hence here on each choice of x0:t œ X0:t, we may

think of these now as measurable functions ylo, yup : X0:t æ R satisfying

ylo(X0:t(a1:t)) Æ Y (a1:t) Æ yup(X0:t(a1:t)) almost surely. (C.12)

In other words, when X0:t(a1:t) is discrete, Theorem 4.4.1 provides bounds on the con-

ditional expectation of Y (a1:t) given the value of X0:t(a1:t) whenever we have ylo and

yup such that (C.12) holds.

When P(X1:t(a1:t) œ B1:t) > 0, a fairly straightforward modification of the proof of

Theorem 4.4.1 yields bounds of the following form:

E[Ylo | X0, X1:N(A1:N) œ B1:N ] Æ E[Y (a1:t) | X0, X1:t(a1:t) œ B1:t]

Æ E[Yup | X0, X1:N(A1:N) œ B1:N ] almost surely.
(C.13)

In particular, this holds regardless of whether or not X0 is discrete. In turn, if X1:t(a1:t) is

discrete, then by a similar argument as was given in the previous subsection, this yields

almost sure bounds on E[Y (a1:t) | X0:t(a1:t)] of the form in (C.11), provided (C.12) holds.

Alternatively, by taking B1:t := X1:t, (C.13) yields bounds of the form

E[Ylo | X0] Æ E[Y (a1:t) | X0] Æ E[Yup | X0].

If the action sequence a1:t is thought of as a single choice of an action from the ex-

tended action space A1:t, then this recovers the bounds originally proposed by Manski

[1990], which allowed conditioning on potentially continuous pre-treatment covariates

corresponding to our X0.

C.7.5 Proof of Theorem 4.4.2 and discussion

Proof. Suppose we have a permissible glo. (The case of gup is analogous). Choose x1:T œ X1:T

arbitrarily, and define new potential outcomes

X̃0 := X0

X̃r(aÕ

1:r) := (A1:r = aÕ

1:r) Xr(aÕ

1:r) + (A1:r ”= aÕ

1:r) xr for r œ {1, . . . , T} and aÕ

1:r œ A1:r.

Similarly, define

Ỹ (aÕ

1:t) := (A1:t = aÕ

1:t) Y (aÕ

1:t) + (A1:t ”= aÕ

1:t) ylo(X̃0:t(aÕ

1:t)) for all aÕ

1:t œ A1:t.
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It immediately follows that

(X̃0:T (A1:T ), Ỹ (A1:t), A1:T ) a.s.= (X0:T (A1:T ), Y (A1:t), A1:T ).

Moreover, it is easily checked that

ylo(X̃0:t(a1:t)) Æ Ỹ (a1:t) Æ yup(X̃0:t(a1:t)) almost surely.

As such, since glo is permissible, we must have, almost surely,

glo(X̃0:t(a1:t)) Æ E[Ỹ (a1:t) | X̃0:t(a1:t)]

= E[Ỹ (A1:t) | X̃0:t(a1:t), A1:t = a1:t]P(A1:t = a1:t | X̃0:t(a1:t))

+ E[Ỹ (a1:t) | X̃0:t(a1:t), A1:t ”= a1:t]¸ ˚˙ ˝
=ylo(X̃0:t(a1:t))

P(A1:t ”= a1:t | X̃0:t(a1:t)).

(C.14)

Now, by our definition of X̃0:t(a1:t), we have almost surely

(A1 ”= a1)P(A1:t = a1:t | X̃0:t(a1:t)) = (A1 ”= a1, X̃s(a1:s) = xs)P(A1:t = a1:t | X̃0:t(a1:t))

= (A1 ”= a1)E[ (A1:t = a1:t, X̃s(a1:s) = xs) | X̃0:t(a1:t)]

= (A1 ”= a1)E[ (A1:t = a1:t, Xs(A1:s) = xs) | X̃0:t(a1:t)]

= 0,

where the last step follows by our assumption that P(Xs(A1:s) = xs) = 0. Combining this

with (C.14), we get, almost surely,

(A1 ”= a1) glo(X0, x1:t) = (A1 ”= a1) glo(X̃0:t(a1:t))

Æ (A1 ”= a1) ylo(X̃0:t(a1:t))

= (A1 ”= a1) ylo(X0, x1:t). (C.15)

Now let x0 œ X0 be the value such that P(X0 = x0) = 1. Using our assumption that

P(A1 ”= a1) > 0 and the fact that x1:t was arbitrary, we obtain

glo(x0:t) Æ ylo(x0:t) for all x1:t œ X1:t.

The result now follows.
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To gain intuition for the phenomenon underlying Theorem 4.4.2, consider a simplified

model consisting of X -valued potential outcomes (X(aÕ) : a œ A), R-valued potential

outcomes (Y (aÕ) : a œ A), and an A-valued random variable A representing the choice

of action. (This constitutes a special case of our setup with T = 1 and X0 taken to be

a singleton set.) Suppose moreover that the following conditions hold:

P(X(A) = x) = 0 for all x œ X

P(A = a) < 1.

We then have

E[Y (a) | X(a)] a.s.= E[Y (A) | X(A), A = a]P(A = a | X(a))+E[Y (a) | X(a), A ”= a]P(A ”= a | X(a)).

(C.16)

But now, since the behaviour of X(a) is only observed on {A = a}, for any given value

of x œ X , we cannot rule out the possibility that

X(a) = (A = a) X(A) + (A ”= a) x almost surely.

In turn, since P(A = a) > 0, this would imply P(X(a) = x) > 0, and, since P(X(A) =

x) = 0, that P(A = a | X(a) = x) = 0. From (C.16), this would yield

E[Y (a) | X(a) = x] = E[Y (a) | X(a) = x, A ”= a].

But now, since the behaviour of Y (a) is unobserved on {A ”= a}, intuitively speaking,

the observational distribution does not provide any information about the value of the

right-hand side, and therefore about the behaviour of E[Y (a) | X(a)] more generally

since x œ X was arbitrary.

C.8 Hypothesis testing methodology

C.8.1 Validity of testing procedure

We show here that our procedure for testing ‚Q Ø Qlo based on the one-sided confidence

intervals R–
lo and ‚R– has the correct probability of type I error, provided R–

lo and ‚R– have

the correct coverage probabilities. In particular, the result below (which applies a standard

union bound argument) shows that if ‚Q Ø Qlo, then our test rejects (i.e. ‚R– < R–
lo) with
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probability at most –. An analogous result is easily proven for testing ‚Q Æ Qup also, with

R–
lo replaced by a one-sided upper (1 ≠ –/2)-confidence interval for Qup, and ‚R– replaced

by a one-sided lower (1 ≠ –/2)-confidence interval for ‚Q.

Proposition C.8.1

Suppose that for some – œ (0, 1) we have random variables ‚R– and R–
lo satisfying

P(Qlo Ø R–
lo) Ø 1 ≠

–

2 (C.17)

P( ‚Q Æ ‚R–) Ø 1 ≠
–

2 . (C.18)

If ‚Q Ø Qlo, then P( ‚R– < R–
lo) Æ –.

Proof. If ‚Q Ø Qlo, then we have

{ ‚R– < R–
lo} ™ { ‚Q > ‚R–

} fi {Qlo < R–
lo}.

To see this, note that

({ ‚Q > ‚R–
}fi{Qlo < R–

lo})c = { ‚Q > ‚R–
}

c
fl{Qlo < R–

lo}
c = { ‚Q Æ ‚R–

}fl{Qlo Ø R–
lo} ™ {R–

lo Æ ‚R–
}.

As such,

P( ‚R– < R–
lo) Æ P({ ‚Q > ‚R–

} fi {Qlo < R–
lo}) Æ P( ‚Q > ‚R–) + P(Qlo < R–

lo) Æ –/2 + –/2 = –.

C.8.2 Unbiased sample mean estimates of Qlo, „Q, and Qup

We use our data to obtain one-sided confidence intervals R–
lo and ‚R– satisfying (C.17)

and (C.18) as required by our procedure for testing ‚Q Ø Qlo. We use an analogous

procedure to obtain confidence intervals for testing ‚Q Æ Qup. We tried two techniques

for this: an exact method based on Hoe�ding’s inequality, and an approximate method

based on bootstrapping. Conceptually, both are based on obtaining unbiased sample

mean estimates of Qlo and ‚Q, which we describe now, before giving the particulars of

each method in the next two subsections.

We begin with our sample mean estimator of Qlo. Recall that we assume access to a

dataset D consisting of i.i.d. copies of observational trajectories of the form

X0, A1, X1(A1), . . . , AT , XT (A1:T ).
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Let D(a1:t, B0:t) be the subset of trajectories in D for which X0:N (A1:N ) œ B0:N . Obtaining

D(a1:t, B0:t) is possible since the only random quantity that N = max{0 Æ s Æ t |

A1:s = a1:s} depends on is A1:t, which is included in the data. We denote the cardinality

of D(a1:t, B0:t) by n := |D(a1:t, B0:t)|. We then denote by Y (i)
lo for i œ {1, . . . , n} the

corresponding values of

Ylo = (A1:t = a1:t) f(X0:t(A1:t)) + (A1:t ”= a1:t) ylo

obtained from each trajectory in D(a1:t, B0:t). This is again possible since both terms only

depends on the observational quantities (X0:t(A1:t), A1:t). It is easily seen that the values

of Y (i)
lo are i.i.d. and satisfy E[Y (i)

lo ] = Qlo. As a result, the sample mean

µlo := 1
n

nÿ

i=1
Y (i)

lo (C.19)

is an unbiased estimator of Qlo.

We obtain an unbiased sample mean estimate of ‚Q in a similar fashion as for Qlo.

Recall that we assume access to a dataset ‚D(a1:t) consisting of i.i.d. copies of

X0, „X1(X0, a1), . . . , „Xt(X0, a1:t).

Let ‚D(a1:t, B0:t) denote the subset of twin trajectories in ‚D(a1:t) for which (X0, „Xt(X0, a1:t)) œ

B0:t, and denote its cardinality by ‚n := | ‚D(a1:t, B0:t)|. Then denote by ‚Y (i) for i œ {1 . . . , ‚n}

the corresponding values of

‚Y = f(X0, „X1:t(X0, a1:t))

obtained from each trajectory in ‚D(a1:t, B0:t). It is easily seen that the values ‚Y (i) are i.i.d.

(since the entries of ‚D(a1:t) are) and satisfy E[ ‚Y (i)] = ‚Q. As a result, the sample mean

‚µ := 1
‚n

‚nÿ

i=1

‚Y (i)

is an unbiased estimator of ‚Q.
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C.8.3 Exact confidence intervals via Hoe�ding’s inequality

Recall that we assume in Section 4.5.1 that Y (a1:t) has the form Y (a1:t) = f(X0:t(a1:t)), and

that moreover

ylo Æ f(x0:t) Æ yup for all x0:t œ B0:t. (C.20)

This means ‚Y (i) is almost surely bounded in [ylo, yup], and so ‚µ gives rise to one-sided

confidence intervals via an application of Hoe�ding’s inequality. The exact form of

these confidence intervals is as follows:

Proposition C.8.2
If (C.20) holds, then for each – œ (0, 1), letting

� := (yup ≠ ylo)
Û

1
2n

log 2
–

and ‚� := (yup ≠ ylo)
Û

1
2‚n

log 2
–

,

and similarly

R–
lo := µlo ≠ � and ‚R– := ‚µ + ‚�,

it follows that

P(Qlo Ø R–
lo) Ø 1 ≠

–

2 and P( ‚Q Æ ‚R–) Ø 1 ≠
–

2 .

Proof. We only prove the result for R–
lo; the other statement can be proved analogously.

Recall that µlo is the empirical mean of i.i.d. samples Y (i)
lo for i œ {1, . . . , n} with E[Y (i)

lo ] =

Qlo (see (C.19)). Moreover, by (C.20), Y (i)
lo is almost surely bounded in [ylo, yup]. Hoe�ding’s

inequality then implies that

P(µlo ≠ Qlo > �) Æ exp
A

≠
2n�2

(yup ≠ ylo)2

B

.

In turn, some basic manipulations yield

P(Qlo Ø R–
lo) = 1 ≠ P(Qlo < µlo ≠ �)

Ø 1 ≠ exp
A

≠
2n�2

(yup ≠ ylo)2

B

= 1 ≠
–

2 .
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C.8.4 Approximate confidence intervals via bootstrapping

While Hoe�ding’s inequality yields the probability guarantees in (C.17) and (C.18) exactly,

the confidence intervals obtained can be conservative. Consequently, our testing procedure

may have lower probability of falsifying certain twins that in fact do not satisfy the

causal bounds. To address this, we also consider an approximate approach based on

bootstrapping that can produce tighter confidence intervals. While other schemes are

possible, bootstrapping provides a general-purpose approach that is straightforward to

implement and works well in practice.

At a high level, our approach here is again to construct one-sided level 1≠–/2 confidence

intervals via bootstrapping [Efron, 1979] on Qlo and ‚Q. Many bootstrapping procedures

for obtaining confidence intervals have been proposed in the literature [Tibshirani and

Efron, 1993, Davison and Hinkley, 1997, Hesterberg, 2015]. Our results reported below

were obtained via the reverse percentile bootstrap (see Hesterberg [2015] for an overview).

(We also tried the percentile bootstrap method, which obtained nearly indistinguishable

results.) In particular, this method takes

R–
lo := 2µlo ≠ � ‚R– := 2‚µ ≠ ‚�,

where � and ‚� correspond to the approximate 1≠–/2 and –/2 quantiles of the distributions

of
1
n

nÿ

i=1
Y (iú)

lo and 1
‚n

‚nÿ

i=1

‚Y (iú),

where each Y (iú)
lo and Y (iú) is obtained by sampling uniformly with replacement from

among the values of Y (i)
lo and Y (i). In our case study, as is typically done in practice, we

approximated � and ‚� via Monte Carlo sampling. It can be shown that the confidence

intervals produced in this way obtain a coverage level that approaches the desired level

of 1 ≠ –/2 as n and ‚n grow to infinity under mild assumptions [Hall, 1988].

C.9 Experimental Details
C.9.1 MIMIC preprocessing

For data extraction and preprocessing, we re-used the same procedure as Komorowski et al.

[2018] with minor modifications. For completeness, we describe the pre-processing steps

applied in Komorowski et al. [2018] and subsequently outline our modifications to these.
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Following Komorowski et al. [2018], we extracted adult patients fulfilling the sepsis-3

criteria [Singer et al., 2016]. Sepsis was defined as a suspected infection (as indicated

by prescription of antibiotics and sampling of bodily fluids for microbiological culture)

combined with evidence of organ dysfunction, defined by a SOFA score Ø 2 [Singer

et al., 2016, Seymour et al., 2016].

Following Komorowski et al. [2018], we excluded patients for whom any of the following

was true: their age was less than 18 years old at the time of ICU admission; their

mortality not documented; their IV fluid/vasopressors intake was not documented; their

treatment was withdrawn.

We made the following modifications to the preprocessing code of Komorowski et al.

[2018] for our experiment. First, instead of extracting physiological quantities (e.g. heart

rate) every 4 hours, we extracted these every hour. Additionally, we excluded patients

with any missing hourly vitals during the first 4 hours of their ICU stay.

We then extracted a total of 19 quantities of interest listed in Table C.1. Of these, 17

were physiological quantities associated with the patient, including static demographic

quantities (e.g. age), patient vital signs (e.g. heart rate), and patient lab values (e.g.

potassium blood concentration). All of these were continuous values, apart from sex.

These were chosen as the subset of physiological quantities extracted from MIMIC by

Komorowski et al. [2018] that are also modelled by Pulse, and were used to define our

observation spaces Xt as described next. The remaining 2 quantities (intravenous fluids

and vasopressor doses) were chosen since they correspond to treatments that the patient

received, and were used to define our action spaces At as described below.

C.9.2 Sample splitting

Before proceeding further, we randomly selected 5% of the extracted our trajectories (583

trajectories, denoted as D0) to use for preliminary tasks such as choosing the parameters

of our hypotheses. We reserved the remaining 95% (11,094 trajectories, denoted as D) for

the actual testing. By a standard sample splitting argument [Cox, 1975], the statistical

guarantees of our testing procedure established above continue to apply even when our

hypotheses are defined in this data-dependent way.
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Category Physiological quantity

Demographic Age
Sex
Weight

Vital Signs Heart rate (HR)
Systolic blood pressure (SysBP)
Diastolic blood pressure (DiaBP)
Mean blood pressure (MeanBP)
Respiratory Rate (RR)
Skin Temperature (Temp)

Lab Values Potassium Blood Concentration (Potassium)
Sodium Blood Concentration (Sodium)
Chloride Blood Concentration (Chloride)
Glucose Blood Concentration (Glucose)
Calcium Blood Concentration (Calcium)
Bicarbonate Blood Concentration (HCO3)
Arterial O2 Pressure (PaO2)
Arterial CO2 Pressure (PaCO2)

Treatments Intravenous fluid (IV) dose
Vasopressor dose

Table C.1: Physiological quantities and treatments extracted from MIMIC

C.9.3 Observation spaces

Our X0 consisted of the following features: age, sex, weight, heart rate, systolic blood

pressure, diastolic blood pressure and respiration rate. We chose X0 in this way because, out

of the 17 physiological quantities we extracted from MIMIC, these were the quantities that

can be initialised to user-provided values before starting a simulation in the version of Pulse

we considered (4.x). (In contrast, Pulse initialises the other 10 features to default values.)

For the remaining observation spaces, we used the full collection of the 17 physiological

quantities we extracted to define X1 = · · · = X4. We encoded all features in Xt numerically,

i.e. X0 = R7, and Xt = R17 for t œ {1, 2, 3, 4}.

C.9.4 Action spaces

Following Komorowski et al. [2018], we constructed our action space using 2 features

obtained from MIMIC, namely intravenous fluid (IV) and vasopressor doses. To obtain

discrete action spaces suitable for our framework, we used the same discretization procedure

for these quantities as was used by Komorowski et al. [2018]. Specifically, we divided

the hourly doses of intravenous fluids and vasopressors into 5 bins each, with the first

bin corresponding to zero drug dosage, and the remaining 4 bins based on the quartiles
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Vasopressor dose (µg/kg/min)
0 0.0 - 0.061 0.061 - 0.15 0.15 - 0.313 > 0.313

IV dose (mL/h)

0 16659 329 256 152 145
0 - 20 5840 428 351 244 145
20 - 75 6330 297 378 383 309
75 - 214 6232 176 175 197 273
> 214 5283 347 488 544 747

Table C.2: Action space with frequency of occurrence in observational data

of the non-zero drug dosages in our held-out observational dataset D0. From this we

obtained action spaces A1 = · · · = A4 with 5 ◊ 5 = 25 elements. Table C.2 shows the

dosage bins constructed in this way, as well as the frequency of each bin’s occurrence

in the observational data.

C.9.5 Hypothesis parameters

We used our held-out observational dataset D0 to obtain a collection of hypothesis

parameters (t, f, a1:t, B0:t). Specifically, for each physiological quantity of interest (e.g.

heart rate) in the list of ‘Vital Signs’ and ‘Lab Values’ given in Table C.1, we did the

following. First, for each t œ {0, . . . , 4}, we obtained 16 choices of Bt by discretizing the

patient space Xt into 16 subsets based on the values of certain features as follows: 2 bins

corresponding to sex; 4 bins corresponding to the quartiles of the ages of patients in D0;

2 bins corresponding to whether or not the value of the chosen physiological quantity of

interest at time t was above or below its median value in D0.

Next, for each t œ {1, . . . , 4}, a1:t œ A1:t, and sequence B0:t with each BtÕ as defined in the

previous step, let D0(t, a1:t, B0:t) denote the subset of D0 corresponding to (t, a1:t, B0:t), i.e.

D0(t, a1:t, B0:t) := {X0:t(A1:t) | (X0:T (A1:T ), A1:T ) œ D0 with A1:t = a1:t and X0:t(A1:T ) œ B0:t}.

We then selected the set of all triples (t, a1:t, B0:t) such that D0(t, a1:t, B0:t) contained at least

one trajectory. This meant the number of combinations of hypotheses parameters that we

considered was limited to a tractable quantity, which had benefits both computationally, and

also by ensuring that we did not sacrifice too much power when adjusting for multiple testing.

Finally, for each selected triple (t, a1:t, B0:t), we chose a corresponding f as follows.

First, we let i œ {1, . . . , dt} denote the index of the physiological quantity of interest in
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Xt = Rdt . We then set ylo, yup to be the .2 and the .8 quantiles of the values in

{(Xt(A1:t))i | X0:t(A1:t) œ D0(t, a1:t, B0:t)}

We then obtained f : X0:t æ R as the function that extracts the physiological quantity of in-

terest from Xt and clips its value to between ylo and yup, i.e. f(x0:t) := min(max(xt)i, ylo), yup).

Overall, accounting for all physiological quantities of interest, we obtained 721 distinct

choices of (t, f, a1:t, B0:t) in this way. Figure C.2 shows the amount of non-held out

observational and twin data that we subsequently used for testing each hypothesis, i.e.

the values of n and ‚n as defined in Section C.8.2 above. (We describe how we generated

our dataset of twin trajectories in Section C.9.6.)

C.9.6 Generating twin trajectories using the Pulse Physiology En-
gine

The Pulse Physiology Engine is an open source comprehensive human physiology simulator

that has been used in medical education, research, and training. The core engine of Pulse

is C++ based with APIs available in di�erent languages, including python. Detailed

documentation is available at: pulse.kitware.com. Pulse allows users to initialize patient

trajectories with given age, sex, weight, heart rate, systolic blood pressure, diastolic blood

pressure and respiration rate and medical conditions such as sepsis, COPD, ARDS, etc.

Once initialised, users have the ability to advance patient trajectories by a given time

step (one hour in our case), and administer actions (e.g. administer a given dose of

IV fluids or vasopressors).

In Algorithm 3 we describe how we generated the twin data to test the chosen hypotheses.

Note that we sampled X0 without replacement as it ensures that each X0 is chosen at most

once and consequently twin trajectories in ‚D(a1:t) are i.i.d. Additionally, Algorithm 3 can be

easily parallelised to improve e�ciency. Figure C.2 shows histograms of the number of twin

trajectories ‚n (as defined in Section C.8.2 above) obtained in this way across all hypotheses.

C.9.7 Bootstrapping details

In addition to Hoe�ding’s inequality, we also used reverse percentile bootstrap method

(see e.g. Hesterberg [2015]) to obtain our confidence intervals on Qlo and Qup as described

in Section C.8.2. We used 100 bootstrap samples for each confidence interval. To avoid

https://pulse.kitware.com/
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Algorithm 3: Generating Twin data ‚D(a1:t).
Inputs: Action sequence a1:t; Observational dataset D.
Output: Twin data ‚D(a1:t) of size m.
for i = 1, . . . , m do

Sample X0 without replacement from D;
„X0 Ω X0 i.e., initialize the Pulse trajectory with the information of X0;
for tÕ = 1, . . . , t do

Administer the median doses of IV fluids and vasopressors in action bin atÕ ;
if tÕ

© 0 (mod 3) then
Virtual patient in Pulse consumes nutrients and water, and urinates;

end
Advance the twin trajectory by one hour;

end
Add the trajectory „X0:t(a1:t) to ‚D(a1:t);

end
Return ‚D(a1:t)

Ours Manski
Physiological quantity Rejs. Hyps. Rejs. Hyps.

Chloride Blood Concentration (Chloride) 24 94 1 46
Sodium Blood Concentration (Sodium) 21 94 9 46
Potassium Blood Concentration (Potassium) 13 94 0 46
Skin Temperature (Temp) 10 86 9 46
Calcium Blood Concentration (Calcium) 5 88 0 46
Glucose Blood Concentration (Glucose) 5 96 1 46
Arterial CO2 Pressure (paCO2) 3 70 0 46
Bicarbonate Blood Concentration (HCO3) 2 90 1 46
Systolic Arterial Pressure (SysBP) 2 154 0 46
Arterial O2 Pressure (paO2) 0 78 1 46
Arterial pH (Arterial_pH) 0 80 0 46
Diastolic Arterial Pressure (DiaBP) 0 72 0 46
Mean Arterial Pressure (MeanBP) 0 92 0 46
Respiration Rate (RR) 0 172 0 46
Heart Rate (HR) 0 162 0 46

Table C.3: Total hypotheses (Hyps.) and rejections (Rejs.) per physiological quantity obtained
using Hoe�ding’s inequality

bootstrapping on small numbers of data points, we did not reject any hypothesis where

either the number of observational trajectories n or twin trajectories ‚n was less than

100, and returned a p-value of 1 in each such case.

Table C.4 shows the number of rejected hypotheses for each physiological quantity using

this approach. We observed a similar trend as in our results obtained using Hoe�ding’s

inequality (Table C.3). For example, we obtained high number of rejections for Sodium,

Chloride and Potassium blood concentrations but few rejections for Arterial Pressure and



C. Causal Falsification of Digital Twins 191

Ours Manski
Physiological quantity Rejs. Hyps. Rejs. Hyps.

Chloride Blood Concentration (Chloride) 47 94 1 46
Sodium Blood Concentration (Sodium) 46 94 12 46
Potassium Blood Concentration (Potassium) 33 94 0 46
Skin Temperature (Temp) 43 86 13 46
Calcium Blood Concentration (Calcium) 44 88 0 46
Glucose Blood Concentration (Glucose) 19 96 0 46
Arterial CO2 Pressure (paCO2) 13 70 0 46
Bicarbonate Blood Concentration (HCO3) 8 90 0 46
Systolic Arterial Pressure (SysBP) 8 154 0 46
Arterial O2 Pressure (paO2) 4 78 1 46
Arterial pH (Arterial_pH) 0 80 0 46
Diastolic Arterial Pressure (DiaBP) 0 72 0 46
Mean Arterial Pressure (MeanBP) 3 92 0 46
Respiration Rate (RR) 12 172 0 46
Heart Rate (HR) 1 162 0 46

Table C.4: Total hypotheses (Hyps.) and rejections (Rejs.) per physiological quantity obtained
using the reverse percentile bootstrap

Heart Rate. Overall, bootstrapping increased the number of rejected hypotheses by a factor

of roughly 3.3 compared with Hoe�ding’s inequality (281 vs. 85 rejections in total). Like

we described for Hoe�ding’s inequality in the main text, we also ran this analysis with each

hypothesis obtained using the unconditional bounds of Manski [1990], and again obtained

substantially fewer rejections compared with our approach based on Theorem 4.4.1.

C.9.8 Tightness of bounds and number of data points per hypoth-
esis

In this section, we show empirically how both the tightness of the bounds [Qlo, Qup] and

the number of data points per hypothesis relate to the number of falsifications obtained

in our case study. Recall that the tightness of [Qlo, Qup] is determined by the value of

P(A1:t = a1:t | X0:N(A1:N) œ B0:N), since we have

Qup ≠ Qlo
yup ≠ ylo

= 1 ≠ P(A1:t = a1:t | X0:N(A1:N) œ B0:N). (C.21)

Here the left-hand side is a number in [0, 1] that quantifies the tightness of the bounds

[Qlo, Qup] relative to the trivial worst-case bounds [ylo, yup], with smaller values meaning

tighter bounds. The equation above shows that the higher the value of P(A1:t = a1:t |

X0:N(A1:N) œ B0:N), the tighter the bounds are.

Figure C.5 shows the bounds are often informative in practice, with P(A1:t = a1:t |

X0:N (A1:N ) œ B0:N ) being reasonably large (and hence the bounds tight, by (C.21) above)
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for a significant number of hypotheses we consider. However, rejections still occur even

when the bounds are reasonably loose (e.g. P(A1:t = a1:t | X0:N(A1:N) œ B0:N) ¥ 0.3),

which shows our method can still yield useful information even in this case. We moreover

observe rejections across a range of di�erent numbers of observational data points used

to test each hypothesis, which shows that our method is not strongly dependent on

the size of the dataset obtained.

C.9.9 Sensitivity to ylo and yup

We investigated the sensitivity of our methodology with respect to our choices of the values

ylo and yup. Specifically, we repeated our procedure with the intervals [ylo, yup] replaced

with [ylo (1 ≠ �/2), yup (1 + �/2)] for a range of di�erent values of � œ R. Figure C.6

plots the number of rejections for di�erent values of �. We observe that for significantly

larger [ylo, yup] intervals, we do obtain fewer rejections, although this is to be expected

since the widths of our both the bounds [Qlo, Qup] and our confidence intervals R–
lo and

R–
up obtained using Hoe�ding’s inequality (see Proposition C.8.2) grow increasingly large

as the width of [ylo, yup] grows. However, we observe that the number of rejections per

outcome is stable for a moderate range of widths of [ylo, yup], which indicates that our

method is reasonably robust to the choice of ylo, yup parameters.
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Figure C.2: Histograms of n and ‚n (as defined in Section C.8.2) across all hypothesis parameters
corresponding to each physiological quantity of interest.
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Figure C.3: Boxenplots showing distributions of ≠ log10 plo and ≠ log10 pup for di�erent
physiological quantities obtained via Hoe�ding’s inequality. Higher values indicate greater
evidence in favour of rejection.
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(a) Not rejected (b) Rejected

(c) Not rejected (d) Rejected

(e) Not rejected (f) Rejected

(g) Not rejected (h) Rejected

Figure C.4: Raw observational data values conditional on A1:t = a1:t and X0:t(A1:t) œ B0:t, and
from the output of the twin conditional on ‚X0:t(a1:t) œ B0:t. Each row shows two distinct choices
of (B0:t, a1:t). Below each figure are shown 95% Hoe�ding confidence intervals for ‚Q and Qup.
Unlike Figure 4.3 from the main text, the horizontal axes of the histograms are not truncated,
and the first row is in particular an untruncated version of Figure 4.3 from the main text. Note
however that the scales of the horizontal axes of the confidence intervals di�er from those of the
histograms, since it is visually more di�cult to determine whether or not the confidence intervals
overlap when fully zoomed out.
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Figure C.5: Sample mean estimate of P(A1:t = a1:t | X0:N (A1:N ) œ B0:N ) for each pair of
hypotheses (Hlo, Hup) corresponding to the same set of parameters (t, f, a1:t, B0:t) that we tested,
along with the corresponding number of observational data points used to test each hypothesis.
Red points indicate that either Hlo or Hup were rejected, while blue points indicate that both
Hlo and Hup were not rejected.

Figure C.6: Rejections obtained as the width of the [ylo, yup] interval changes. Here, the interval
is increased (or decreased) symmetrically on each side.
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